Differences

This shows you the differences between two versions of the page.

Link to this comparison view

asc:laboratoare:06 [2024/04/08 13:50]
emil.slusanschi [Resurse]
asc:laboratoare:06 [2025/04/09 09:11] (current)
alexandru.bala [Fluxuri nonimplicite]
Line 109: Line 109:
  
     // init all elements to 0     // init all elements to 0
-    cudaMemset(data,​ 0, NUM_ELEM);+    cudaMemset(data,​ 0, NUM_ELEM ​* sizeof(unsigned long long int));
  
     // launch kernel writes     // launch kernel writes
Line 135: Line 135:
 </​code>​ </​code>​
  
-Functie ​concurrentRW citeste valoarea de la adresa data[blockIdx.x],​ o incrementeaza cu threadId ​si apoi o scrie.+Functia ​concurrentRW citeste valoarea de la adresa data[blockIdx.x],​ o incrementeaza cu threadIdx.x ​si apoi o scrie.
 In acest caz avem 10 thread-uri care fac operatii citire/​scriere la aceeasi adresa, deci un comportament nedefinit. In acest caz avem 10 thread-uri care fac operatii citire/​scriere la aceeasi adresa, deci un comportament nedefinit.
  
Line 158: Line 158:
 </​code>​ </​code>​
  
-Corect ar fi folosirea ​functie ​atomicAdd pentru a serializa accesul.+Corect ar fi folosirea ​functiei ​atomicAdd pentru a serializa accesul.
  
 <code C> <code C>
Line 212: Line 212:
 ==== Executie asincrona Host si Device ==== ==== Executie asincrona Host si Device ====
  
-Folosind apeluri asincrone, operatiile de executie catre device sunt puse in coada avand controlul intors catre host instant. Astfel unitatea host poate continua executia fara sa fie blocata in asteptarea ​executiei+Folosind apeluri asincrone, operatiile de executie catre device sunt puse in coada avand controlul intors catre host instant. Astfel unitatea host poate continua executia fara sa fie blocata in asteptarea ​altor task-uri
 Urmatoarele operatii sunt asincrone relativ la host: Urmatoarele operatii sunt asincrone relativ la host:
   - Lansari de kernel   - Lansari de kernel
-  - Copieri in cadrul spatiului de memorie ​unui device+  - Copieri in cadrul spatiului de memorie ​al unui device
   - Copiere memorie host -> device, avand < 64 KB   - Copiere memorie host -> device, avand < 64 KB
   - Copiere memorie host -> device, avand functii cu sufix Async   - Copiere memorie host -> device, avand functii cu sufix Async
-  - Functii memorie set+  - Functii memorie set (setare / initializare de memorie la o valoare)
  
 Pentru a face debug unor scenarii de executie asincrona se poate dezactiva complet executia asincrona setand variabila de mediu CUDA_LAUNCH_BLOCKING la 1. Executia de kernels este sincrona cand se ruleaza cu un profiler (Nsight, Visual Profiler). Pentru a face debug unor scenarii de executie asincrona se poate dezactiva complet executia asincrona setand variabila de mediu CUDA_LAUNCH_BLOCKING la 1. Executia de kernels este sincrona cand se ruleaza cu un profiler (Nsight, Visual Profiler).
 +
 +==== Fluxuri nonimplicite ====
 +
 +Pentru a folosi cudaMemcpyAsync,​ este necesar lucrul cu fluxuri nonimplicite (non-default streams), care, in C/C++ pot fi declarate, create si distruse in partea de cod de pe host (CPU) in urmatorul fel: 
 +
 +<code C>
 +cudaStream_t stream1;
 +cudaError_t result;
 +result = cudaStreamCreate(&​stream1);​
 +result = cudaStreamDestroy(stream1);​
 +
 +</​code>​
 +
 +Odata creat un astfel de flux, el poate fi utilizat in procesul de copiere a memoriei host -> device astfel:
 +
 +<code C>
 +// num_bytes = N * sizeof (type_a);
 +result = cudaMemcpyAsync(d_a,​ a, num_bytes, cudaMemcpyHostToDevice,​ stream1);
 +</​code>​
 +
 +Pentru a emite un kernel către un flux nonimplicit,​ specificăm identificatorul fluxului ca al patrulea parametru de configurare a execuției. Se observă și un al treilea parametru de configurare a execuției, care este folosit pentru a aloca memorie partajată (shared memory) device-ului (GPU-ului), utilizându-se 0 dacă nu se dorește acest aspect.
  
 <code C> <code C>
-result = cudaMemcpyAsync(d_a,​ a, N, cudaMemcpyHostToDevice, stream1)+increment<<<​1,N,0,stream1>>>​(d_a);
 </​code>​ </​code>​
  
Line 232: Line 253:
 ==== Executie si transfer date asincron ​ ==== ==== Executie si transfer date asincron ​ ====
  
-Anumite device-uri pot executa un transfer asincron memorie alaturi de o executie de kernel. Acest lucru este dependent de compute capability si se poate verifica in device property asyncEngineCount. De asemenea, se pot face transferuri de memorie intra-device simultan cu executia de kernel cand atat device property concurrentKernels si asyncEngineCount sunt 1.+Anumite device-uri pot executa un transfer asincron memorie alaturi de o executie de kernel. Acest lucru este dependent de compute capability si se poate verifica in device property asyncEngineCount. 
 + 
 +{{:​asc:​lab9:​cuda_async.png?​900|}} 
 + 
 +De asemenea, se pot face transferuri de memorie intra-device simultan cu executia de kernel cand atat device property concurrentKernels, cat si asyncEngineCount sunt 1. 
 + 
 +{{:​asc:​lab9:​cuda_async_2.png?​900|}}
  
 ===== Dynamic Paralellism ​ ===== ===== Dynamic Paralellism ​ =====
Line 259: Line 286:
  
 <​hidden>​ <​hidden>​
-{{:​asc:​lab9:​sol:​lab9_sol.tar.gz|Soluție Laborator ​9}}+{{:​asc:​lab9:​sol:​lab9_sol.tar.gz|Soluție Laborator ​6}}
 </​hidden>​ </​hidden>​
  
-/* {{:​asc:​lab9:​sol:​lab9_sol.zip|Solutie Laborator ​9}} */+/* {{:​asc:​lab9:​sol:​lab9_sol.zip|Solutie Laborator ​6}} */
  
-{{:​asc:​lab6:​asc_lab9.pdf|Enunt Laborator 6}}+/* {{:​asc:​lab6:​asc_lab9.pdf|Enunt Laborator 6}} */
  
   * Responsabili laborator: Matei Barbu, Alexandru Bala   * Responsabili laborator: Matei Barbu, Alexandru Bala
Line 280: Line 307:
     * [[https://​www.nvidia.com/​en-us/​data-center/​tesla-p100/​|NVIDIA Pascal P100]]     * [[https://​www.nvidia.com/​en-us/​data-center/​tesla-p100/​|NVIDIA Pascal P100]]
   * Advanced CUDA   * Advanced CUDA
 +    * [[http://​www-personal.umich.edu/​~smeyer/​cuda/​grid.pdf | CUDA Thread Basics]]
 +    * [[https://​devblogs.nvidia.com/​even-easier-introduction-cuda/​ | An Even Easier Introduction to CUDA]]
     * [[https://​developer.download.nvidia.com/​CUDA/​training/​StreamsAndConcurrencyWebinar.pdf|CUDA Streams 1]]     * [[https://​developer.download.nvidia.com/​CUDA/​training/​StreamsAndConcurrencyWebinar.pdf|CUDA Streams 1]]
     * [[https://​devblogs.nvidia.com/​gpu-pro-tip-cuda-7-streams-simplify-concurrency/​|CUDA Streams 2]]     * [[https://​devblogs.nvidia.com/​gpu-pro-tip-cuda-7-streams-simplify-concurrency/​|CUDA Streams 2]]
     * [[https://​devblogs.nvidia.com/​introduction-cuda-dynamic-parallelism/​|CUDA Dynamic Parallelism]]     * [[https://​devblogs.nvidia.com/​introduction-cuda-dynamic-parallelism/​|CUDA Dynamic Parallelism]]
-    ​* [[http://​www-personal.umich.edu/​~smeyer/​cuda/​grid.pdf | CUDA Thread Basics]] +    * [[https://developer.nvidia.com/​blog/how-overlap-data-transfers-cuda-cc/|How to Overlap Data Transfers in CUDA C/C++]] 
-    ​* [[https://devblogs.nvidia.com/​even-easier-introduction-cuda/ | An Even Easier Introduction ​to CUDA]]+
  
asc/laboratoare/06.1712573441.txt.gz · Last modified: 2024/04/08 13:50 by emil.slusanschi
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0