Differences

This shows you the differences between two versions of the page.

Link to this comparison view

asc:laboratoare:05 [2024/04/02 11:14]
alexandru.bala [Ierarhia de memorie]
asc:laboratoare:05 [2025/04/02 10:20] (current)
alexandru.bala [Ierarhia de memorie]
Line 42: Line 42:
 <code sh> <code sh>
 /* marcam pentru compilator regValPi in register file */ /* marcam pentru compilator regValPi in register file */
-__private ​float regValPi = 3.14f;+__private__ ​float regValPi = 3.14f;
 /* compilatorul cel mai probabil oricum incadreaza regVal2Pi ca registru */ /* compilatorul cel mai probabil oricum incadreaza regVal2Pi ca registru */
 float regVal2Pi = 2 * 3.14f; float regVal2Pi = 2 * 3.14f;
Line 55: Line 55:
 <code sh> <code sh>
 /* fiecare work item salveaza un element */ /* fiecare work item salveaza un element */
-__local ​float lArray[lid] = data[gid];+__local__ ​float lArray[lid] = data[gid];
 </​code>​ </​code>​
   *In functie de implementarea hardware, 100GB/sec -> 2TB/sec   *In functie de implementarea hardware, 100GB/sec -> 2TB/sec
Line 71: Line 71:
 **Constant Memory** **Constant Memory**
 <code sh> <code sh>
-__const ​float pi = 3.14f+__const__ ​float pi = 3.14f
 </​code>​ </​code>​
   * In functie de implementarea hardware, 100GB/sec -> 1TB/sec   * In functie de implementarea hardware, 100GB/sec -> 1TB/sec
Line 79: Line 79:
 **Global Memory** **Global Memory**
 <code sh> <code sh>
-__kernel ​void process(__global ​float* data){ ... }+__kernel__ ​void process(__global__ ​float* data){ ... }
 </​code>​ </​code>​
   * In functie de implementarea hardware, 30GB/sec -> 500GB/sec   * In functie de implementarea hardware, 30GB/sec -> 500GB/sec
   * Video RAM (VRAM), de regula cu o capacitate intre 1GB si 12GB in functie de placa video   * Video RAM (VRAM), de regula cu o capacitate intre 1GB si 12GB in functie de placa video
   * Memorie dedicata specializata doar pentru placile grafice discrete (GPU-urile integrate in CPU folosesc RAM)   * Memorie dedicata specializata doar pentru placile grafice discrete (GPU-urile integrate in CPU folosesc RAM)
-  * In general latime mare de banda (256-512 biti) si chipuri de memorii de mare viteza (GDDR5)+  * In general latime mare de banda (256-512 biti) si chipuri de memorii de mare viteza (GDDR7)
  
 **Host Memory (RAM)** **Host Memory (RAM)**
Line 287: Line 287:
 </​hidden>​ </​hidden>​
  
-  * Responsabili laborator: Matei Barbu+  * Responsabili laborator: Matei Barbu, Alexandru Bala
  
 ==== Referinte ==== ==== Referinte ====
Line 293: Line 293:
     * [[https://​booksite.elsevier.com/​9780124077263/​downloads/​advance_contents_and_appendices/​appendix_C.pdf|Graphics and Computing GPUs]]     * [[https://​booksite.elsevier.com/​9780124077263/​downloads/​advance_contents_and_appendices/​appendix_C.pdf|Graphics and Computing GPUs]]
   * Documentatie CUDA:   * Documentatie CUDA:
-    * [[https://​docs.nvidia.com/​pdf/CUDA_C_Programming_Guide.pdf|CUDA C Programming]]+    * [[https://​docs.nvidia.com/​cuda/cuda-c-programming-guide/​index.html|CUDA C Programming]]
     * [[https://​docs.nvidia.com/​cuda/​pdf/​CUDA_Compiler_Driver_NVCC.pdf| CUDA NVCC compiler]]     * [[https://​docs.nvidia.com/​cuda/​pdf/​CUDA_Compiler_Driver_NVCC.pdf| CUDA NVCC compiler]]
     * [[https://​docs.nvidia.com/​cuda/​profiler-users-guide/​index.html| CUDA Visual Profiler]]     * [[https://​docs.nvidia.com/​cuda/​profiler-users-guide/​index.html| CUDA Visual Profiler]]
-    * [[https://developer.download.nvidia.com/​compute/cuda/9.1/​Prod/​docs/​sidebar/​CUDA_Toolkit_Release_Notes.pdf|CUDA 9.1 Toolkit]]+    * [[https://docs.nvidia.com/​cuda/cuda-toolkit-release-notes/index.html|CUDA Dev Toolkit]]
     * [[https://​developer.nvidia.com/​cuda-gpus|CUDA GPUs]]     * [[https://​developer.nvidia.com/​cuda-gpus|CUDA GPUs]]
-  * Acceleratoare ​hpsl (hpsl-wn01, hpsl-wn02, hpsl-wn03+  * Acceleratoare ​xl (NVidia P100
-    * [[http://international.download.nvidia.com/​tesla/pdf/tesla-k40-passive-board-spec.pdf|NVIDIA Tesla K40M]] +    * [[https://www.nvidia.com/​en-us/data-center/tesla-p100/​|NVIDIA ​Pascal P100]]
-    * [[https://​en.wikipedia.org/​wiki/​Nvidia_Tesla|NVIDIA ​Tesla]] +
-  * Acceleratoare dp (dp-wn01, dp-wn02, dp-wn03) +
-    * [[https://​www.nvidia.com/​docs/​IO/​43395/​NV_DS_Tesla_C2050_C2070_jul10_lores.pdf|NVIDIA Tesla C2070]] +
-    * [[http://​www.nvidia.com/​docs/​io/​43395/​nv_ds_tesla_c2050_c2070_apr10_final_lores.pdf|NVIDIA Tesla 2050/​2070]] +
-    * [[https://​cseweb.ucsd.edu/​classes/​fa12/​cse141/​pdf/​09/​GPU_Gahagan_FA12.pdf|NVIDIA CUDA Fermi/Tesla]]+
   * Advanced CUDA   * Advanced CUDA
-    * [[https://​devblogs.nvidia.com/​gpu-pro-tip-cuda-7-streams-simplify-concurrency/​|CUDA Streams]]+    ​* [[https://​developer.download.nvidia.com/​CUDA/​training/​StreamsAndConcurrencyWebinar.pdf|CUDA Streams 1]] 
 +    ​* [[https://​devblogs.nvidia.com/​gpu-pro-tip-cuda-7-streams-simplify-concurrency/​|CUDA Streams ​2]]
     * [[https://​devblogs.nvidia.com/​introduction-cuda-dynamic-parallelism/​|CUDA Dynamic Parallelism]]     * [[https://​devblogs.nvidia.com/​introduction-cuda-dynamic-parallelism/​|CUDA Dynamic Parallelism]]
 +    * [[http://​www-personal.umich.edu/​~smeyer/​cuda/​grid.pdf | CUDA Thread Basics]]
 +    * [[https://​devblogs.nvidia.com/​even-easier-introduction-cuda/​ | An Even Easier Introduction to CUDA]]
  
asc/laboratoare/05.1712045688.txt.gz · Last modified: 2024/04/02 11:14 by alexandru.bala
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0