Video Laborator 7: https://youtu.be/y1st9QxXbn8
Autor: Cristian Lambru
Lumina este un factor foarte important în redarea cât mai realistă a unei scene 3D. Împreună cu proprietățile de material ale unui obiect, lumina determină modalitatea în care obiectul este afișat în scena 3D.
Există mai multe modele empirice pentru calculul reflexiei luminii într-un punct al unei suprafețe: Phong (1975), Blinn (1977), Oren-Nayar (1994), Cook-Torrance (1981), Lambert (1760), etc (la curs veți discuta despre modelul Lambert, Phong și Blinn).
Ca model de reflexie vom prezenta în continuare un model care extinde modelul de reflexie Phong și care conține toate cele 4 componente care pot fi folosite pentru a calcula iluminarea. Pentru a obține astfel culoarea într-un punct al unei suprafețe vom avea următoarele componente :
Contribuția fiecărei componente este calculată ca o combinație dintre proprietățile de material ale obiectului (factorul de strălucire și de difuzie al materialului) și proprietățile sursei de lumină (culoarea sursei de lumină, poziția sursei de lumină).
Astfel, culoarea finală a luminii într-un punct aparținând unei suprafețe este:
culoare = emisiva + ambientala + difuza + speculara; # GLSL
În cele ce urmează prezentăm pe scurt ce reprezintă cele 4 componente și cum pot fi calculate.
Aceasta reprezintă lumina emisă de un obiect și nu ține cont de nicio sursă de lumină. O utilizare des întâlnită pentru componenta emisivă este aceea de a simula obiectele care au strălucire proprie (de ex: sursele de lumina precum neonul sau televizorul).
Avem astfel:
emisiva = Ke; # GLSL
Aceasta reprezintă lumina reflectată de către obiectele din scenă de atât de multe ori încât pare să vină de peste tot.
Astfel, lumina ambientală nu vine dintr-o direcție anume, apărând ca și cum ar veni din toate direcțiile. Din această cauză, componenta ambientală este independentă de poziția sursei de lumină.
Componenta ambientală depinde de culoarea de material ambientală a suprafeței obiectului și de culoarea ambientală luminii.
Similar componentei emisive, componenta ambientală este o constantă (se poate extinde modelul atribuind fiecărei lumini din scenă o culoare ambientală).
Avem astfel:
ambientala = Ka * culoareAmbientalaGlobala; # GLSL
Aceasta reprezintă lumina reflectată de suprafața obiectului în mod egal în toate direcțiile.
Cantitatea de lumină reflectată este proporțională cu unghiul de incidență al razei de lumină cu suprafața obiectului.
Avem astfel: $difuza = K_d \cdot culoareLumina \cdot max(\vec{N}\cdot \vec{L}, 0)$
difuza = Kd * culoareLumina * max (dot(N,L), 0); # GLSL
Un reflector perfect, de exemplu o oglindă, reflectă lumina numai într-o singură direcție $\vec{R}$, care este simetrică cu $\vec{L}$ față de normala la suprafață. Prin urmare, doar un observator situat exact pe direcția respectivă va percepe raza reflectată.
Componenta speculară reprezintă lumina reflectată de suprafața obiectului numai în jurul acestei direcții, $\vec{R}$. Acest vector se obține prin:
vec3 R = reflect (-L, N) # GLSL
reflect()
are primul parametru vectorul incident care intră în suprafață, nu cel care iese din ea așa cum este reprezentat în figură
În modelul Phong se aproximează scăderea rapidă a intensității luminii reflectate atunci când $\alpha$ crește prin $(cos \alpha)^n$, unde $n$ este exponentul de reflexie speculară al materialului (shininess).
După cum se observă, față de celelalte 3 componente, componenta speculară depinde și de poziția observatorului. Dacă observatorul nu se află într-o poziție unde poate vedea razele reflectate, atunci nu va vedea reflexie speculară pentru zona respectivă. De asemenea, nu va vedea reflexie speculară dacă lumina se află în spatele suprafeței.
Astfel avem: $speculara = K_s \cdot culoareLumina \cdot primesteLumina \cdot (max(\vec{V}\cdot \vec{R}, 0))^n$
speculara = Ks * culoareLumina * primesteLumina * pow(max(dot(V, R), 0), n) # GLSL
Un alt model de iluminare (Blinn (1977)) pentru componenta speculară se bazează pe vectorul median, notat cu $\vec{H}$. El face unghiuri egale cu $\vec{L}$ și cu $\vec{V}$. Dacă suprafața ar fi orientată astfel încât normala sa să aibă direcția lui $\vec{H}$, atunci observatorul ar percepe lumina speculară maximă (deoarece ar fi pe direcția razei reflectate specular).
Termenul care exprimă reflexia speculară este în acest caz: $(\vec{N} \cdot \vec{H})^n$
pow(dot(N, H), n) # GLSL
Atunci când sursa de lumină și observatorul sunt la infinit, utilizarea termenului $\vec{N}\cdot \vec{H}$ este avantajoasă deoarece $\vec{H}$ este constant.
Ținând cont de toate acestea, avem pentru componenta speculară următoarea formulă: $speculara = K_s \cdot culoareLumina \cdot primesteLumina \cdot (max(\vec{N}\cdot \vec{H}, 0)^n $
speculara = Ks * culoareLumina * primesteLumina * pow(max(dot(N, H), 0), n) # GLSL
Atunci când sursa de lumină punctiformă este suficient de îndepărtată de obiectele scenei vizualizate, vectorul $\vec{L}$ este același în orice punct. Sursa de lumină este numită în acest caz direcțională. Aplicând modelul pentru vizualizarea a două suprafețe paralele construite din același material, se va obține o aceeași intensitate (unghiul dintre $\vec{L}$ și normală este același pentru cele două suprafețe). Dacă proiecțiile suprafețelor se suprapun în imagine, atunci ele nu se vor distinge. Această situație apare deoarece în model nu se ține cont de faptul că intensitatea luminii descrește proporțional cu inversul pătratului distanței de la sursa de lumină la obiect. Deci, obiectele mai îndepărtate de sursă sunt mai slab luminate. O posibilă corecție a modelului, care poate fi aplicată pentru surse poziționale (la distanță finită de scenă) este:
culoareObiect = emisiva + ambientala + factorAtenuare * ( difuza + speculara ); # GLSL
Corecția de mai sus nu satisface cazurile în care sursa este foarte îndepărtată. De asemenea, dacă sursa este la distanță foarte mică de scenă, intensitățile obținute pentru două suprafețe cu același unghi $i$, între $\vec{L}$ și $\vec{N}$, vor fi mult diferite.
De asemenea, există mai multe modele de shading, care specifică metoda de implementare a modelului de calcul al reflexiei luminii. Mai exact, modelul de shading specifică unde se evaluează modelul de reflexie. Dacă vrem să calculăm iluminarea pentru o suprafață poligonală:
Figura 1. Diferite modele de shading: Lambert (o culoare per primitivă), Gouraud (o culoare per vârf), Phong (o culoare per fragment)
În acest laborator se va discuta modelul de shading Gouraud.
Pentru simplitate, în cadrul laboratorului vom implementa modelul de shading Gouraud (în vertex shader):
culoareAmbientalaGlobala
care va fi o constantă în shader, iar în loc de Ka (constanta de material ambientală a obiectului) vom folosi Kd (constanta de material difuză a obiectului).vec3 world_pos = (model_matrix * vec4(v_position,1)).xyz;
vec3 world_normal = normalize( mat3(model_matrix) * v_normal );
vec3 L = normalize( light_position - world_pos );
vec3 V = normalize( eye_position - world_pos );
vec3 H = normalize( L + V );
Tasta F5 - reîncarcă programele shader în timpul execuției aplicației. Nu este nevoie să opriți aplicația întrucât un program shader este compilat și executat de către procesorul grafic și nu are legătură cu codul sursă C++ propriu-zis.
RenderSimpleMesh
astfel încât să trimiteți corect valorile uniforme către Shader: