Differences

This shows you the differences between two versions of the page.

Link to this comparison view

ep:labs:10 [2021/12/04 16:33]
vlad.stefanescu [Resources]
ep:labs:10 [2025/02/11 22:58] (current)
cezar.craciunoiu [Lab 9 - Machine Learning Optimization]
Line 1: Line 1:
-====== Lab 10 - Machine Learning ======+====== Lab 10 - Machine Learning ​Optimization ​======
  
 ===== Objectives ===== ===== Objectives =====
  
-  * Understand basic concepts of machine learning +  * TODO
-  * Remember examples of real-world problems that can be solved with machine learning +
-  * Learn the most common performance evaluation metrics for machine learning models +
-  * Analyse the behaviour of typical machine learning algorithms using the most popular techniques +
-  * Be able to compare multiple machine learning models+
  
 ===== Resources ===== ===== Resources =====
  
-In this lab, we will study the basic performance evaluation in machine learning, covering elementary concepts such as classification,​ regression, data fitting, clustering and much more.  +TODO
- +
-You will work in an environment that is easy to use, and provides a couple of tools like manipulating data and visualizing results. We will use a **Jupyer Notebook** hosted on **Google Colab**, which comes with a variety of useful tools already installed. +
- +
-The exercises will be solved in Python, using various popular libraries that are usually integrated in machine learning projects: +
- +
-  * [[https://​scikit-learn.org/​stable/​documentation.html|Scikit-Learn]]:​ fast model development,​ performance metrics, pipelines, dataset splitting +
-  * [[https://​pandas.pydata.org/​pandas-docs/​stable/​|Pandas]]:​ data frames, csv parser, data analysis +
-  * [[https://​numpy.org/​doc/​|NumPy]]:​ scientific computation +
-  * [[https://​matplotlib.org/​3.1.1/​users/​index.html|Matplotlib]]:​ data plotting +
- +
-As datasets, we will use some public corpora provided by the Kaggle community:​ +
- +
-  * [[https://​www.kaggle.com/​uciml/​pima-indians-diabetes-database/​data|Classification Dataset]] +
-  * [[https://​www.kaggle.com/​zaraavagyan/​weathercsv|Regression dataset]] +
- +
-You can also check out these cheet sheets for fast reference to the most common libraries:​ +
- +
-**Cheat sheets:** +
- +
-  * [[https://​perso.limsi.fr/​pointal/​_media/​python:​cours:​mementopython3-english.pdf)|python]] +
-  * [[https://​s3.amazonaws.com/​assets.datacamp.com/​blog_assets/​Numpy_Python_Cheat_Sheet.pdf|numpy]] +
-  * [[https://​s3.amazonaws.com/​assets.datacamp.com/​blog_assets/​Python_Matplotlib_Cheat_Sheet.pdf|matplotlib]] +
-  * [[https://​s3.amazonaws.com/​assets.datacamp.com/​blog_assets/​Scikit_Learn_Cheat_Sheet_Python.pdf|sklearn]] +
-  * [[https://​github.com/​pandas-dev/​pandas/​blob/​master/​doc/​cheatsheet/​Pandas_Cheat_Sheet.pdf|pandas]] +
- +
-<​solution -hidden>​ +
-Solution: {{:​ep:​labs:​lab_12_ml_revisited_solution.zip}} +
-</​solution>​+
  
 ===== Tasks ===== ===== Tasks =====
Line 45: Line 13:
 ==== Google Colab Notebook ==== ==== Google Colab Notebook ====
  
-For this lab, we will use Google Colab for exploring performance evaluation in machine learning. Please solve your tasks [[https://​github.com/​vladastefanescu/​machine-learning-introduction/​blob/​main/​Machine_Learning_Introduction.ipynb|here]] by clicking "​**Open in Colaboratory**"​. +TODO
- +
-You can then export this python notebook as a PDF (**File -> Print**) and upload it to **Moodle**.+
  
 +===== Feedback =====
  
 +Please take a minute to fill in the **[[https://​forms.gle/​NpSRnoEh9NLYowFr5 | feedback form]]** for this lab.
  
  
ep/labs/10.1638628411.txt.gz · Last modified: 2021/12/04 16:33 by vlad.stefanescu
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0