Această temă are termen limită de predare 17 Noiembrie 23:59, până când va fi încărcată pe curs.upb.ro și va fi prezentată la laborator. Dacă tema va fi încărcată după termenul limită va avea o penalizare de minim 30%, apoi câte 10% pentru fiecare zi peste termenul limită.
Tema valorează 10% din punctajul cursului.
Enunț tema: pdf
sau folosiți comanda:
pip install -U scikit-learn
Utilizați acest schelete de cod:
import numpy as np from get_features import get_features from sklearn.neighbors import KNeighborsClassifier import scipy def main(): # load data from matfile 'data.mat' data = scipy.io.loadmat('data.mat') audio_train, audio_test = data['audio_train'].T, data['audio_test'].T labels_train, labels_test = data['labels_train'], data['labels_test'] fs = data['fs'][0,0] # setul de data este impartit in 2 parti: train si test # vom calcula setul de trasaturi pentru ambele seturi # apoi vom folosi o metoda de machine learning antrenata pe setul de train si # vom evalua performanta folosind setul de test # Pentru a calcula rezultatele mai rapid, putem folosi doar o fractiune din # fiecare semnal audio. Rezulatele vor fi mai proaste, dar timpul de calcul va # fi mai mic. alpha = 1.0 # 0.1 start1 = audio_train.shape[1] // 2 - int(alpha * audio_train.shape[1] // 2) + 1 end1 = audio_train.shape[1] // 2 + int(alpha * audio_train.shape[1] // 2) audio_train_small = audio_train[:, start1:end1] start2 = audio_test.shape[1] // 2 - int(alpha * audio_test.shape[1] // 2) + 1 end2 = audio_test.shape[1] // 2 + int(alpha * audio_test.shape[1] // 2) audio_test_small = audio_test[:, start2:end2] # Dimensiunile datelor ar trebui sa fie: # audio_train_small: [D1, N] # audio_test_small: [D2, N] # labels_train: [D1, 1] # labels_test: [D2, 1] # calculam vectorii de trasaturi pentru fiecare fisier din datasetul de train si de test # functia `get_features`` primeste toate sunetele dintr-un set de date intr-o matrice # de dimensiune Dimensiune_dataset (D) x Numaresults_esantioane (N) [D x N] si returneaza toate # trasaturile (features) acestor sunete intr-o matrice de dimensiune [D x (2*M)] # filters: [M, F] # feat_train: [D1, 2M] # feat_test: [D2, 2M] # TODO: calculati trasaturile feat_train = get_features(audio_train_small, fs) feat_test = get_features(audio_test_small, fs) labels_train = labels_train[:,0] labels_test = labels_test[:,0] clf = KNeighborsClassifier() clf.fit(feat_train, labels_train) pred_train = clf.predict(feat_train) pred_test = clf.predict(feat_test) acc_train = np.mean(pred_train == labels_train) acc_test = np.mean(pred_test == labels_test) print(f'Accuracy on train: {acc_train:.2f}') print(f'Accuracy on test: {acc_test:.2f}') # main function if __name__ == "__main__": main()