Laboratorul 08.

DFT în detaliu: DFT leakage, zero-padding

În acest laborator vom continua să explorăm Transformata Fourier Discretă (DFT), urmărind efectul eșantionării în domeniul frecvență (apariția sinc-ului din cauza fenomenului de leakage) și metode de rezolvare a acestuia (zero-padding, ferestre, creșterea numărului de eșantioane).

Exercițiul 1 -- DFT leakage și zero-padding [4p]

În acest exercițiu veți reface exemplul pe care l-am făcut la curs cu 2 sinusoide pentru a vedea efectul fenomenului de leakage și a experimenta zero-padding. Pentru asta vom folosi următorul semnal:

$s(n) = A_1 \sin(2\pi f_1 n t_s) + A_2 \sin(2\pi f_2 n t_s)$,

unde $f_1$ si $f_2$ sunt frecvențele celor două sinusoide care compun semnalul, și $t_s = 1/f_s$ e perioada de eșantionare ($f_s = 1/t_s$).

Pentru a face asta urmăriți următorii pași:

  1. Creați si plotați semnalul, folosind $A_1=1$, $A_2=0.5$, $f_s = 8000$ Hz, $f_1 = 1000$ Hz, $f_2 = 2000$ Hz pentru $N=8$ eșantioane.
  2. Calculați DFT pentru acest semnal și plotați magnitudinea acesteia, ca în laboratoarele anterioare. Ar trebui să obțineti ceva de genul următor:

  1. Apoi eliminați prima sinusoidă (ex.: făcând $f_1=0$) și verificați dacă aveți semnal doar la 2kHz.
  2. Schimbați $f_2$ de la 2kHz la $f_2=2500$ Hz. Plotați spectrul. Ce putem observa? Ar trebui să vedeti că toată energia de la frecvența de 2.5kHz a fost distribuită pe frecvențele adiacente. După cum am învățat la curs, acesta este fenomenul cunoscut ca “DFT leakage”, și apare din cauza faptului că folosirea unui număr finit de eșantioane poate fi modelată ca înmulțirea unui semnal infinit eșantionat cu o funcție rectangulară (al cărui spectru este un sinc). Înainte, nu vedeam acest efect pentru că eșantioanele sinc-ului erau exact în punctele unde sinc-ul era 0.
  3. Pentru a vedea mai bine efectul de leakage trebuie să creștem numărul de eșantioane folosite pentru DFT. Pentru asta adăugați zerouri semnalului vostru. De exemplu adăugati 56 de zerouri ca să obțineți un total de $K=64$ eșantioane (din care doar $N=8$ sunt diferite de 0). Apoi calculați DFT pentru acest semnal. Ar trebui să vedeti forma sinc-ului mult mai clară și de asemenea că e centrată în jurul frecvenței semnalului (2.5kHZ).
  4. Acum schimbati din nou frecvența la $f2=2000$ Hz, dar folosind în continuare zero-padding și plotați DFT. Ar trebui să vedeți că într-adevăr sinc-ul era acolo, dar eșantioanele de la $1000, 3000, 4000 \ldots$ erau 0.

Exercițiul 2 -- DFT leakage și ferestre [5p]

În acest exercițiu aveți dat un semnal(click aici) care conține două note (două unde sinusoidale). Însă, una dintre ele este mult mai puternică decât cealaltă, așa că a doua, cea mai slabă, nu e ușor de detectat din spectrul semnalului. În acest exercițiu vom încerca să folosim o funcție fereastră pentru a determina cele două note.

Să facem următoarele:

  1. Incărcați și plotați semnalul dat. Ar trebui să observați că se vor încărca variabilele 'notes_signal' și 'fs', unde fs este frecvența de eșantionare (amintiți-vă ca aveți nevoie de ea pentru a înțelege rezultatul dat de DFT).
  2. Calculați DFT pentru semnal și plotați magnitudinea, ca în laboratoarele precedente. Ar trebui să obțineți ceva precum aceasta: . În acest moment probabil nu puteți spune care sunt cele două frecvențe ale semnalului, din cauza faptului că funcția sinc a primei sinusoide acoperă componenta celei de-a doua sinusoide.
  3. Folosind zero-padding în acest caz nu va ajuta prea mult (încercați). Așa că vom aplica semnalului o funcție fereastră (ex. 'Hanning' sau 'Hamming'; căutați aceste funcții în Matlab/Octave folosind help), precum am discutat la curs. Ideea este să generăm o funcție fereastră pe care o vom înmulții cu semnalul original. Plotați semnalul după aplicarea funcției fereastră.
  4. Calculați DFT pentru semnalul rezultat după aplicarea funcției fereastră. Puteți spune, cel puțin aproximativ, care sunt cele două frecvente conținute de semnal?

Semnalul, fereastra hanning și semnalul atenuat ar trebui să arate așa:

Exercițiul 3 -- Tratarea DFT leakage prin creșterea numărului de eșantione [1p]

Precum am discutat la curs, frecvențele date de sinc pot fi reduse prin creșterea numărului de eșantioane diferite de zero ale semnalului nostru. Așa că, atunci când este posibil, aceasta ne va ajuta să vizualizăm semnale foarte aproape în frecvență.

Pentru a vedea acest efect, să utilizăm aceleași note, dar cu un semnal mult mai lung click aici.

Procedați la fel ca înainte:

  1. Plotați semnalul și spectrul său. Verificați dacă puteți distinge cele două frecvențe(ar trebui).
  2. Aplicați funcția fereastră și verificați spectrul. Ar trebui sa fie mult mai clar.
  3. Ce note muzicale reprezintă aceste frecvențe? Puteți să redați acest sunet folosind funcția Matlab 'sound'.
ps/labs/08.txt · Last modified: 2020/12/01 16:19 by valentina.iliescu
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0