This is an old revision of the document!
fftifft
\begin{equation} DFT: S(k) = \sum^{N-1}_{n = 0}{s(n)e^{\frac{-j 2 \pi n k}{K}}}, k \in \{0, ..., K-1\} \\ IDFT\ (inversa\ DFT): s(n) = \frac{1}{K}\sum^{K-1}_{k = 0}{S(k)e^{\frac{j 2 \pi n k}{K}}}, n \in \{0, ..., N-1\} \end{equation} 6p
click aici$k \in \{ -9, ..., 9\}$$k = 0$$k = 1, ..., 9$$k = −1, ... , −9$
$k = \{0, 1, ..., N/2 - 1\}$
npz = np.load('noisy_signal.npz') noisy_signal = npz['noisy_signal']
$N = 128$$f_s = N = 128$
fftfftshiftfftfft$0$$N/2 - 1$$-N/2$$-1$1p
$k \in \{-9, ..., 9\}$$power = \frac{1}{N}\sum^{N-1}_{k = 0}{|S(k)|^2}$1p
SNRdB1p
fft1p
IDFTifft2p
4p
$f_s = 8000$$k = 0, 1, ..., N-1$$\frac{k \cdot f_s}{N}$
npz = np.load('noisy_sound.npz') noisy_sound = npz['noisy_sound'] fs = npz['fs']
s
from scipy.io.wavfile import write import sounddevice as sd import time sd.play(s, fs) plt.show() time.sleep(T) sd.stop()
s
from scipy.io.wavfile import write sound = np.int16(s/np.max(np.abs(s)) * 32767) write('s.wav', fs, sound)
Atenție
1p
from scipy.fft import fft2 from scipy.fft import ifft2
import matplotlib.image as image import matplotlib.pyplot as plt img = image.imread("peppers.png") plt.figure() plt.imshow(img, cmap=plt.get_cmap('gray'), vmin=0, vmax=1) plt.title("Original Image") plt.show()
def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
plt.imshow(img1, cmap=plt.get_cmap('gray'), vmin=0, vmax=1)