This is an old revision of the document!


Laboratorul 04.

Pentru asta va trebui să urmăriți acești pași:

  • Creați semnalul $s(t)$ pentru $t\in\{1,\ldots,T=128\}$, folosind $a=0.05$. [0.5p]
  • Calculați și plotați (cu stem) spectrul folosind FFT (Transformata Fourier Rapidă), pe care nu am făcut-o încă la curs, dar o vom face în următoarele cursuri. Pentru moment, puteți folosi acest cod: [0.5p]
h = figure;
fx = zeros(1, T);
findex = T/2*linspace(0,1,T/2);
fx((T/2)+1:end) = findex;
fx(1:T/2) = [-T/2, -findex(end:-1:2)];
fs = fft(s);
stem(fx, abs(fftshift(fs)));
xlabel('Frequency component (k)');
ylabel('Magnitude of component');
title('Fourier coefficients before amplitude modulation');
print(h, '-dpng', 'coefficients_before_amod.png'); % doar daca vreti sa salvati ca png graficull
  • Modulați semnalul în amplitudine folosind frecvența purtătoare $f_c = \frac{20}{T}$, i.e. face 20 de perioade complete în $T=128$ eșantioane ale semnalului $s(t)$. O variantă simplă de modulare este să calculați: $x(t) = (1+s(t)) \cdot \cos(2\pi f_c t)$. [0.5p]
  • Calculați și plotați (cum am făcut mai devreme, cu funcția fft) spectrul semnalului modulat în amplitudine. Comparați-l cu spectrul semnalului original. Este ceea ce v-ați așteptat? [0.5p]

Atenție: Vom învăța la curs că spectrul obținut prin transformata Fourier Discretă este periodic. Funcțiile fft / ifft consideră primii jumătate plus unu coeficienți pentru frecvențele pozitive, apoi următoarea jumătate corespunzătoare coeficienților negativi. Pentru a obține un spectru centrat în zero (doar ca să îl vizualizăm precum ne-am obișnuit) vom folosi funcția fftshift.

</hidden>

ps/labs_python/04.1697710903.txt.gz · Last modified: 2023/10/19 13:21 by constantin.savu1510
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0