La APP vom învăța cum să analizăm o problemă și o soluție a acesteia (mai precis, un program secvențial) și cum am putea să îmbunătățim soluțiile la problema respectivă (adică cum am putea să eficientizăm prin paralelizare soluțiile problemei).
În cadrul laboratoarelor de APP vom studia despre programarea paralelă (OpenMP, pthreads), despre programarea distribuită (MPI) și despre analiza performanțelor unui program (profiling).
OpenMP reprezintă un API prin care putem paraleliza programe secvențiale scrise în C/C++. Acesta este un API high-level, în sensul că programatorul are o varietate de tool-uri și de opțiuni la dispoziția sa, ele putând fi folosite cu mare ușurință.
OpenMP este creat pe baza modelului fork-join, unde avem un thread principal (master), din care se creează alte thread-uri (fork, echivalent cu pthread_create
din pthreads), care, împreună cu thread-ul master, execută task-uri în paralel, în cadrul unor zone numite regiuni paralele. După ce task-urile respective sunt terminate, thread-urile forked “revin” în thread-ul principal (join).
Pentru a putea folosi OpenMP în cod, trebuie inclusă biblioteca omp.h în cod: #include <omp.h>
.
Pentru compilare, este necesar un flag, care diferă în funcție de compilator:
gcc helloworld.c -o helloworld -fopenmp
cc -xopenmp helloworld.c -o helloworld
Pentru OpenMP, se folosesc directive de compilare de tip pragma pentru a marca blocuri de cod paralelizate și pentru a folosi elemente de sincronizare.
Tipar: #pragma omp numele_directivei [clause, …]
Exemplu: #pragma omp parallel default(shared) private(beta, pi)
Pentru ca o bucată de cod să fie executată de mai multe thread-uri, folosim directiva #pragma omp parallel
prin care marcăm faptul că acea zonă de cod este executată în paralel de mai multe thread-uri.
#pragma omp parallel { // cod paralelizat }
Exemplu de folosire:
#include <stdio.h> #include <omp.h> int main(int argc, char** argv) { #pragma omp parallel { int tid = omp_get_thread_num(); printf("Hello world from thread number %d\n", tid); } #pragma omp parallel { int tid = omp_get_thread_num(); printf("Frumos in anul 4, zice thread-ul %d\n", tid); } return 0; }
De asemenea, putem avea regiuni paralele imbricate:
#include <stdio.h> #include <omp.h> int main(int argc, char** argv) { #pragma omp parallel { printf("Parallel region thread %d\n", omp_get_thread_num()); #pragma omp parallel { printf("Nested parallel region thread %d\n", omp_get_thread_num()); } } return 0; }
Pentru setarea numărului de thread-uri din cadrul programului paralelizat, putem să facem în două moduri:
export OMP_NUM_THREADS=8
omp_set_num_threads(8)
Dacă dorim să măsurăm timpul de execuție al unei secvențe de cod paralelizat, putem folosi omp_get_wtime()
. Exemplu de folosire:
t1 = omp_get_wtime(); #pragma omp parallel { int tid = omp_get_thread_num(); printf("Hello world from thread number %d\n", tid); } t2 = omp_get_wtime(); printf("Total execution time = %lf\n", (t2 - t1));
Alte funcții utile:
omp_get_num_threads()
omp_get_thread_num()
omp_get_num_procs()
Variabilele în cadrul blocurilor paralele pot fi:
În acest caz avem două clauze pentru context:
SHARED
- variabilă partajată între thread-uri (exemplu: SHARED©
)
PRIVATE
- variabilă văzută doar de thread-ul respectiv în blocul paralelizat (exemplu: PRIVATE(a, b)
)
Exemplu:
#include <stdio.h> #include <omp.h> int main(int argc, char** argv) { int a = 6, b = 9, c = 10; #pragma omp parallel private(a,b) shared(c) { // privates set the scope of variables a = 1, b = 2, c = a + b; // cu private(a, b), aceste valori (la a si b) vor fi vizibile doar in acest bloc int tid = omp_get_thread_num(); printf("In parallel block, in thread no %d: %d %d %d\n", tid, a, b, c); // printing 1 2 3 } printf("%d %d %d\n", a, b, c); // printing 6 9 3 #pragma omp parallel shared(c) { a = 1, b = 2, c = a + b; int tid = omp_get_thread_num(); printf("In parallel block, in thread no %d: %d %d %d\n", tid, a, b, c); // printing 1 2 3 } printf("%d %d %d\n", a, b, c); // printing 1 2 3 #pragma omp parallel { a = 1, b = 2, c = a + b; int tid = omp_get_thread_num(); printf("In parallel block, in thread no %d: %d %d %d\n", tid, a, b, c); // printing 1 2 3 } printf("%d %d %d\n", a, b, c); // printing 1 2 3 return 0; }
În OpenMP putem paraleliza buclele de tip for folosind directiva #pragma omp for
în cadrul unei zone paralele. În acest fel, iterațiile din for sunt împărțite egal thread-urilor, fiecare thread având iterațiile sale din cadrul buclei for.
Paralelizarea buclelor poate fi eficientizată folosind directiva SCHEDULE
, despre care vom discuta în laboratorul 2.
Exemplu de folosire:
#include <stdio.h> #include <omp.h> int main(int argc, char** argv) { int i, x[20]; #pragma omp parallel private(i) shared(x) { #pragma omp for for (i = 0; i < 20; i++) { x[i] = i; printf("iteration no. %d | thread no. %d\n", i, omp_get_thread_num()); } } printf("\n"); // o alta forma, aceeasi functionalitate #pragma omp parallel for private(i) shared(x) for (i = 0; i < 20; i++) { x[i] = i; printf("iteration no. %d | thread no. %d\n", i, omp_get_thread_num()); } return 0; }
În OpenMP avem la dispoziție elemente de sincronizare, prin care putem să ne asigurăm faptul că soluția paralelizată funcționează corect, fără probleme în ceea ce privește rezultatele incorecte sau deadlocks.
Pentru zonele critice, unde avem operații de read-write, folosim directiva #pragma omp critical, care reprezintă un mutex, echivalentul lui pthread_mutex_t
din pthreads, care asigură faptul că un singur thread accesează zona critică la un moment dat, thread-ul deținând lock-ul pe zona critică în momentul respectiv, și că celelalte thread-uri care nu au intrat încă în zona critică așteaptă eliberarea lock-ului de către thread-ul aflat în zona critică în acel moment.
Exemplu de folosire:
#include <stdio.h> #include <omp.h> int main (int argc, char** argv) { int thread_id, sum = 0; #pragma omp parallel private(thread_id) shared(sum) { thread_id = omp_get_thread_num(); #pragma omp critical sum += thread_id; } printf("%d",sum); return 0; }
Un alt element de sincronizare reprezintă bariera, care asigură faptul că niciun thread gestionat de barieră nu trece mai departe de aceasta decât atunci cand toate thread-urile gestionate de barieră au ajuns la punctul unde se află bariera.
În OpenMP, pentru barieră avem directiva #pragma omp barrier
, echivalent cu pthread_barrier_t
din pthreads.
Exemplu de folosire:
#include <stdio.h> #include <omp.h> int main (int argc, char** argv) { #pragma omp parallel { printf("First print by %d\n", omp_get_thread_num()); #pragma omp barrier printf("Second print by %d\n", omp_get_thread_num()); } return 0; }
reduction
este o directivă folosită pentru operații de tip reduce / fold pe arrays / colecții sau simple însumări / înmulțiri în cadrul unui loop. Mai precis, elementele dintr-un array sau indecșii unui loop sunt “acumulați” într-o singură variabilă, cu ajutorul unei operații, al cărui semn este precizat.
Tipar: reduction(operator_operatie:variabila_in_care_se_acumuleaza)
Exemplu de reduction: reduction(+:sum)
, unde se însumează elementele unui array în variabila sum
Exemplu de folosire de reduction:
int sum = 0; #pragma omp parallel for reduction(+:sum) private(i) for (i = 1; i <= num_steps; i++) { sum += i; }
array_sum.c
din schelet, unde este implementată suma serială a elementelor dintr-un array.