Lab 2 - Rust Traits and Secure References

Workpoint 1

#![allow(dead_code)]
fn main() {
    struct Color(i32, i32, i32);
 
    let c = Color(0, 255, 255);
    println!("({}, {}, {})", c.0, c.1, c.2);
}

Workpoint 2

#![allow(dead_code)]
struct Person {
    firstname: String,
    lastname: String,
    age: usize,
}
 
impl Person {
    pub fn new(firstname: String, lastname: String, age: usize) -> Person {
        Person { firstname: firstname, lastname: lastname, age:age }
    }
 
    pub fn set_firstname (&mut self, firstname: String) {
        self.firstname = firstname;
    }
 
    pub fn set_lastname (&mut self, lastname: String) {
        self.lastname = lastname;
    }
}
 
fn main () {
    let mut p = Person::new ("The".to_string(), String::from("Name"), 9);
    p.set_firstname ("New".to_string());
    println! ("{} {} is now {}", p.firstname, p.lastname, p.age);
}

Workpoint 3

Solution: Ioana CIUPITU

struct Professor {
  firstname: String,
  lastname: String,
  age: usize,
}
 
struct Student {
  firstname: String,
  lastname: String,
  age: usize,
}
 
trait Person {
  fn get_name (&self) -> String;
  fn get_job (&self) -> String;
}
impl Professor {
    fn new(firstname: String, lastname: String, age: usize) -> Professor {
        Professor { firstname: firstname, lastname: lastname, age:age }
    }
}
impl Person for Professor {
 
  fn get_name (&self) -> String {
    format!("{} {}", self.firstname, self.lastname)
  }
  fn get_job (&self) -> String {
    "student".to_string()
  }
}
 
impl Student {
    fn new(firstname: String, lastname: String, age: usize) -> Student {
        Student { firstname: firstname, lastname: lastname, age:age }
    }
}
impl Person for Student {
 
  fn get_name (&self) -> String {
    format!("{}", self.firstname)
  }
  fn get_job (&self) -> String {
    return "profesor".to_string();
  }
}
 
fn main () {
  // make a professor
  let p = Professor::new (String::from("John"), String::from("Doe"), 20);
  // make a student
  let s = Student::new ("Johnny".to_string(), "Doe".to_string(), 50);
 
//   println! ("{:?}", p);
//   println! ("{:?}", s);
 
  println! ("{} is a {}", p.get_name (), p.get_job());
  println! ("{} is a {}", s.get_name (), s.get_job());
}

Workpoint 4

Solution: Alexandru HOGEA

#![allow(dead_code)]
 
use std::fmt;
use std::ops::*;
use std::cmp::*;
 
#[derive(Copy, Clone)] // used for impl Add, Sub and Mul
struct Complex {
    r: f64,
    i: f64
}
 
impl Complex {
    fn new(r: f64, i: f64) -> Complex {
        Complex { r, i }
    }
}
impl fmt::Display for Complex {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.r == 0.0 {
            write!(f, "({}i)", self.i)
        } else if self.i > 0.0 {
            write!(f, "({}+{}i)", self.r, self.i)
        } else if self.i == 0.0 {
            write!(f, "({})", self.r)
        } else {
            write!(f, "({}{}i)", self.r, self.i)
        }
    }
}
 
impl Mul for Complex {
    type Output = Self;
    //    z. a  = x. a  * y. a  - x. b  * y. b ;
    //    z. b  = x. a  * y. b  + x. b  * y. a ;
    fn mul(self, rhs: Self) -> Self {
        let r = self.r * rhs.r - self.i * rhs.i;
        let i = self.r * rhs.i + self.i * rhs.r;
        Complex::new(r, i)
    }
}
 
impl Add for Complex {
    type Output = Self;
    fn add(self, rhs: Self) -> Self {
        let r = self.r + rhs.r;
        let i = self.i + rhs.i;
        Complex::new(r, i)
    }
}
 
impl Sub for Complex {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self {
        let r = self.r - rhs.r;
        let i = self.i - rhs.i;
        Complex::new(r, i)
    }
}
 
fn main () {
    let n1 = Complex::new (2.0, 3.0);
    let n2 = Complex::new (-2.0, 3.0);
    let n3 = Complex::new (2.0, -3.0);
    let n4 = Complex::new (3.0, 0.0);
    let n5 = Complex::new (0.0, 3.0);
 
    println! ("The number is {}", n1); // prints 2+3i
    println! ("The number is {}", n2); // prints -2+3i
    println! ("The number is {}", n3); // prints 2-3i
    println! ("The number is {}", n4); // prints 3
    println! ("The number is {}", n5); // prints 3i
 
    println! ("The number is {}", n1-n1); // prints 0
    println! ("The number is {}", n1+n2); 
    println! ("The number is {}", n1-n2);
    println! ("The number is {}", n1*n2);
}

Workpoint 5

Solution: Alexandru HOGEA

#![allow(dead_code)]
 
use std::fmt;
use std::ops::*;
use std::cmp::*;
 
#[derive(Copy, Clone)] // used for impl Add, Sub and Mul
struct Complex {
    r: f64,
    i: f64
}
 
impl Complex {
    fn new(r: f64, i: f64) -> Complex {
        Complex { r, i }
    }
}
impl fmt::Display for Complex {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.r == 0.0 {
            write!(f, "({}i)", self.i)
        } else if self.i > 0.0 {
            write!(f, "({}+{}i)", self.r, self.i)
        } else if self.i == 0.0 {
            write!(f, "({})", self.r)
        } else {
            write!(f, "({}{}i)", self.r, self.i)
        }
    }
}
 
impl Mul for Complex {
    type Output = Self;
    //    z. a  = x. a  * y. a  - x. b  * y. b ;
    //    z. b  = x. a  * y. b  + x. b  * y. a ;
    fn mul(self, rhs: Self) -> Self {
        let r = self.r * rhs.r - self.i * rhs.i;
        let i = self.r * rhs.i + self.i * rhs.r;
        Complex::new(r, i)
    }
}
 
impl Add for Complex {
    type Output = Self;
    fn add(self, rhs: Self) -> Self {
        let r = self.r + rhs.r;
        let i = self.i + rhs.i;
        Complex::new(r, i)
    }
}
 
impl Sub for Complex {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self {
        let r = self.r - rhs.r;
        let i = self.i - rhs.i;
        Complex::new(r, i)
    }
}
 
impl PartialEq for Complex {
    fn eq(&self, other: &Self) -> bool {
        self.r == other.r && self.i == other.i
    }
}
 
fn main () {
    let n1 = Complex::new (2.0, 3.0);
    let n2 = Complex::new (-2.0, 3.0);
    let n3 = Complex::new (2.0, -3.0);
    let n4 = Complex::new (3.0, 0.0);
    let n5 = Complex::new (0.0, 3.0);
 
    println! ("The number is {}", n1); // prints 2+3i
    println! ("The number is {}", n2); // prints -2+3i
    println! ("The number is {}", n3); // prints 2-3i
    println! ("The number is {}", n4); // prints 3
    println! ("The number is {}", n5); // prints 3i
 
    println! ("The number is {}", n1-n1); // prints 0
    println! ("The number is {}", n1+n2); 
    println! ("The number is {}", n1-n2);
    println! ("The number is {}", n1*n2);
    println! ("The numbers {} and {} are {}", n1, n2, if n1==n2 { "equal"} else {"not equal"});
}

Workpoint 6

Solution: Alexandru HOGEA

#![allow(dead_code)]
 
use std::fmt;
use std::ops::*;
use std::cmp::*;
 
#[derive(Copy, Clone)] // used for impl Add, Sub and Mul
struct Complex {
    r: f64,
    i: f64
}
 
impl Complex {
    fn new(r: f64, i: f64) -> Complex {
        Complex { r, i }
    }
}
impl fmt::Display for Complex {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.r == 0.0 {
            write!(f, "({}i)", self.i)
        } else if self.i > 0.0 {
            write!(f, "({}+{}i)", self.r, self.i)
        } else if self.i == 0.0 {
            write!(f, "({})", self.r)
        } else {
            write!(f, "({}{}i)", self.r, self.i)
        }
    }
}
 
impl Mul for Complex {
    type Output = Self;
    //    z. a  = x. a  * y. a  - x. b  * y. b ;
    //    z. b  = x. a  * y. b  + x. b  * y. a ;
    fn mul(self, rhs: Self) -> Self {
        let r = self.r * rhs.r - self.i * rhs.i;
        let i = self.r * rhs.i + self.i * rhs.r;
        Complex::new(r, i)
    }
}
 
impl Add for Complex {
    type Output = Self;
    fn add(self, rhs: Self) -> Self {
        let r = self.r + rhs.r;
        let i = self.i + rhs.i;
        Complex::new(r, i)
    }
}
 
impl Sub for Complex {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self {
        let r = self.r - rhs.r;
        let i = self.i - rhs.i;
        Complex::new(r, i)
    }
}
 
impl PartialEq for Complex {
    fn eq(&self, other: &Self) -> bool {
        self.r == other.r && self.i == other.i
    }
}
 
impl PartialOrd for Complex {
    fn partial_cmp(&self, other: &Complex) -> Option<Ordering> {
        let radical_self = (self.r * self.r + self.i * self.i).sqrt();
        let radical_other = (other.r * other.r + other.i * other.i).sqrt();
 
        radical_self.partial_cmp(&radical_other)
    }
}
 
fn main () {
    let n1 = Complex::new (2.0, 3.0);
    let n2 = Complex::new (-2.0, 3.0);
    let n3 = Complex::new (2.0, -3.0);
    let n4 = Complex::new (3.0, 0.0);
    let n5 = Complex::new (0.0, 3.0);
 
    println! ("The number is {}", n1); // prints 2+3i
    println! ("The number is {}", n2); // prints -2+3i
    println! ("The number is {}", n3); // prints 2-3i
    println! ("The number is {}", n4); // prints 3
    println! ("The number is {}", n5); // prints 3i
 
    println! ("The number is {}", n1-n1); // prints 0
    println! ("The number is {}", n1+n2); 
    println! ("The number is {}", n1-n2);
    println! ("The number is {}", n1*n2);
    println! ("The numbers {} and {} are {}", n1, n2, if n1==n2 { "equal"} else {"not equal"});
 
    println! ("The number is {}", n1<n2);
    println! ("The number is {}", n1<=n2); 
    println! ("The number is {}", n1>n2);
    println! ("The number is {}", n1>=n2);
}
saiot/laboratoare/02.txt ยท Last modified: 2020/10/21 23:16 by alexandru.radovici
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0