Differences

This shows you the differences between two versions of the page.

Link to this comparison view

dsm:assignments:01 [2025/10/05 18:13]
emilian.radoi
dsm:assignments:01 [2025/11/20 16:31] (current)
andrei.niculae1004
Line 17: Line 17:
 === Milestones and Deliverables === === Milestones and Deliverables ===
  
-== 1. M1 (04.11.24) - Related Work / State-of-the-Art Review + Presentation (1p) ==+== 1. M1 (03.11.25) - Related Work / State-of-the-Art Review + Presentation (1p) ==
   * **Objective**:​ Establish the research context by reviewing and summarising related work (existing studies and relevant literature related to your topic).   * **Objective**:​ Establish the research context by reviewing and summarising related work (existing studies and relevant literature related to your topic).
     * **Action Items**:     * **Action Items**:
Line 23: Line 23:
       * Summarise the current state-of-the-art methods in the field.       * Summarise the current state-of-the-art methods in the field.
       * Identify gaps in the research or areas for potential improvement.       * Identify gaps in the research or areas for potential improvement.
-    * **Documentation**:​ Create a report section (2 pages excluding references) detailing your findings, including citations of key papers and a discussion of how your project will build upon or differ from existing work, in **English**. +    * **Documentation ​(English, IEEE format)**: Create a report section (2 pages excluding references) detailing your findings, including citations of key papers and a discussion of how your project will build upon or differ from existing work.
-    * **Upload Documentation**:​ [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49434|Upload]] (Must contain title and authors)+
     * **Grading**     * **Grading**
-      * **References ​(0.3p)**: Include a minimum of 10 academic papers in your review. +      * **(0.3p) ​References**: Include a minimum of 10 academic papers in your review. 
-      * **Research Questions ​(0.2p)**: Provide at least 2 meaningful research questions that will answer, or that should be addressed in future work. Helpful guide [[https://​atlasti.com/​guides/​qualitative-research-guide-part-1/​research-question | here]]. +      * **(0.2p) ​Research Questions**: Provide at least 2 meaningful research questions that will answer, or that should be addressed in future work. Helpful guide [[https://​atlasti.com/​guides/​qualitative-research-guide-part-1/​research-question | here]]. 
-      * **Content ​(0.5p)**: Capture the current landscape of the topic. You may use qualitative surveys for inspiration. Also **check the tips below**). In your review explicitly answer these sub-questions,​ each worth 0.1p:+      * **(0.5p) ​Content**: Capture the current landscape of the topic. You may use qualitative surveys for inspiration. Also **check the tips below**). In your review explicitly answer these sub-questions,​ each worth 0.1p:
           * What datasets are used and why? (0.1p)           * What datasets are used and why? (0.1p)
           * What benchmarks or evaluation methods are used? Are there any limitations?​ (0.1p)           * What benchmarks or evaluation methods are used? Are there any limitations?​ (0.1p)
Line 45: Line 44:
       * Document each papers by noting its **main contributions** (these are usually stated explicitly by the authors).       * Document each papers by noting its **main contributions** (these are usually stated explicitly by the authors).
       * Explore top conferences using the [[https://​portal.core.edu.au/​conf-ranks | CORE ranking portal]].       * Explore top conferences using the [[https://​portal.core.edu.au/​conf-ranks | CORE ranking portal]].
-        * Focus on highly ranked conferences such as CVPR, ECCV, NeurIPS ​and EMNLP. You can scout the accepted papers in the current year by searching them on arXiv. Example: [[https://​neurips.cc/​Downloads/​2025 | NeurIPS 2025 accepted papers]].+        * Focus on highly ranked conferences such as CVPR, ECCV, NeurIPSEMNLP, etc. You can scout the accepted papers in the current year by searching ​for them on arXiv. Example: [[https://​neurips.cc/​Downloads/​2025 | NeurIPS 2025 accepted papers]].
       * Evaluate papers based on the **number of citations** (though newer papers may have fewer), year of publication and author credibility.       * Evaluate papers based on the **number of citations** (though newer papers may have fewer), year of publication and author credibility.
     * Choose a topic that truly interests you. It will make the research process more engaging and enjoyable.     * Choose a topic that truly interests you. It will make the research process more engaging and enjoyable.
 +    * **Upload M1 (Documentation)**:​ [[https://​curs.upb.ro/​2025/​mod/​assign/​view.php?​id=24449|Upload]] must contain title and authors.
  
   ​   ​
-== 2. M2 (18.11.24) - Dataset Collection and Baseline Results (1p) ==+== 2. M2 (24.11.25) - Dataset Collection and Baseline Results (1p) ==
   * **Objective**:​ Obtain the datasets required for your project and implement a baseline model for comparison.   * **Objective**:​ Obtain the datasets required for your project and implement a baseline model for comparison.
     * **Action Items**:     * **Action Items**:
Line 60: Line 60:
         * Obtain preliminary results to compare against future improvements.         * Obtain preliminary results to compare against future improvements.
       * **Evaluation Metrics**: Choose appropriate metrics (e.g., accuracy, F1-score, ROC-AUC) and document initial performance.       * **Evaluation Metrics**: Choose appropriate metrics (e.g., accuracy, F1-score, ROC-AUC) and document initial performance.
-    * **Documentation ​** (IEEE conference paper format): Submit a report section (2 pages excluding references) describing the dataset, preprocessing steps, baseline model, and results. +    * **Documentation (English, ​IEEE format)**: Submit a report section (2 pages excluding references) describing the dataset, preprocessing steps, baseline model, and results.
-    * **Upload Documentation**:​ [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49438|Upload]]+
     * **Grading**     * **Grading**
-      * Description of selected ​**datasets**: purpose, number of records, quality, method ​of collection, size, feature description ​- 0.5+      * **(0.5p) Dataset description**: Description and rationale for the selected datasets, including dataset ​purpose, number of records, ​data quality, ​collection ​method, size, and feature description. 
-      * Description of **implemented baseline**: - 0.1 +      * **(0.1p) Baseline description**: Clear explanation of the implemented baseline method
-      * Report ​**initial ​results**: ​- 0.3 +      * **(0.3p) Initial ​results**: ​Presentation of baseline performance results 
-      * Result analysis ​- 0.1+      * **(0.1p) ​Result analysis**: Interpretation and insights from the obtained results. 
 +    * **Upload M2 (Documentation and Code)**: [[https://​curs.upb.ro/​2025/​mod/​assign/​view.php?​id=24452|Upload]] must contain title and authors.
  
-== 3. M3 (18.12.24) - Own Contribution (1p) == + 
-  * **Objective**: ​Implement ​your novel contribution to the field, either by solving ​a new problem or improving an existing ​method+== 3. M3 (15.12.25) - Own Contribution (1p) == 
-    * **Types of Contributions**: +  * **Objective**: ​Develop and implement ​your original ​contribution to the field, either by addressing ​a new research ​problem or improving an existing ​approach
-      * Address a New ProblemTackle ​a medical data science ​issue that has not been addressed by related ​work. +    * **Types of contributions**: 
-      * Improve ​Existing Methods+      * Address a new problemInvestigate ​a medical data science ​challenge ​that has not been sufficiently explored in prior work. 
-        * Improve ​ResultsEnhance the performance of an existing ​solution by optimising ​models or experimenting ​with different ​techniques. +      * Improve ​existing methods
-        * Extensive ​Experiments: Conduct ​extensive experiments ​to assess ​your model’s robustness, including testing with different ​datasets or under varying conditions. +        * Improve ​resultsOptimise ​existing models or experiment ​with alternative ​techniques ​to achieve better performance
-        * New ApproachIntroduce a new method or architecture (e.g., switching from traditional CNNs to transformers), ​even if it does not outperform state-of-the-art ​methodsas long as it provides ​novel perspective.+        * Extensive ​experiments: Conduct ​comprehensive testing ​to evaluate ​your model’s robustness ​across multiple ​datasets or varying conditions. ​Novelty is important: even if your model does not outperform ​the state-of-the-art,​ it should offer new perspective ​or insight.
           * Examples:           * Examples:
             * Use a different deep learning architecture (e.g., ResNet vs. EfficientNet).             * Use a different deep learning architecture (e.g., ResNet vs. EfficientNet).
             * Apply a novel training strategy, such as self-supervised learning or data augmentation techniques.             * Apply a novel training strategy, such as self-supervised learning or data augmentation techniques.
             * Propose a hybrid model that combines multiple approaches (e.g., combining CNNs with decision trees).             * Propose a hybrid model that combines multiple approaches (e.g., combining CNNs with decision trees).
-    * **Documentation** (IEEE conference paper format): Write a report section (2 pages excluding references) **justifying your chosen approach**, detailing your contribution,​ how it differs from existing work, and comparing your experimental results to the baseline and state of the art. +    * **Documentation (English, ​IEEE format)**: Write a report section (2 pages excluding references) **justifying your chosen approach**, detailing your contribution,​ how it differs from existing work, and comparing your experimental results to the baseline and state-of-the-art.
-    * **Upload Documentation and code**: [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49446|Upload]]+
     * **Grading**:​     * **Grading**:​
-      * Description ​of proposed ​contribution: 0.3 +      * (0.3p) Clear and well-justified explanation ​of your contribution/s
-      * Implementation and results on selected dataset: 0.5 +      * (0.5p) ​Implementation and results on selected dataset/s
-      * Result analysis, comparison with baseline: ​0.2+      * (0.2p) ​Result analysis, ​and comparison with the baseline
 +    * **Upload M3 (Documentation and Code)**[[https://​curs.upb.ro/​2025/​mod/​assign/​view.php?​id=24454|Upload]] must contain title and authors.
  
-== 4. M4 (08.01.25) - Final paper + Presentation (1p) ==+ 
 +== 4. M4 (12.01.25) - Final paper + Presentation (1p) ==
   * **Objective**:​ Compile your project into a well-organised academic report.   * **Objective**:​ Compile your project into a well-organised academic report.
     * **Action Items**:     * **Action Items**:
-      * Write a research-style report following the IEEE conference paper format.+      * Write a research-style report following the IEEE format ​(8 pages excluding references).
       * **Structure**:​       * **Structure**:​
-        * **Abstract**: ​Briefly summarize your project, contributionsand key findings. +        * **Abstract**: ​Summarise the project, contributions and key findings. 
-        * **Introduction**: ​Explain ​the problem ​you are addressing, motivationand background. +        * **Introduction**: ​Describe ​the problem, motivation and background. 
-        * **Related Work**: Include the summary ​from M1. +        * **Related Work**: Include the literature review ​from M1. 
-        * **Methodology**:​ Detail your approach, including algorithms, modelsand techniques ​used+        * **Methodology**:​ Detail your approach, including algorithms, models and techniques. 
-        * **Experiments**:​ Describe ​the datasets, baseline methods, and results from M2. +        * **Experiments**:​ Describe datasets, baseline methods, and results from M2. 
-        * **Own Contribution**:​ Document your original contribution,​ as outlined ​in M3. +        * **Own Contribution**:​ Document your original contribution,​ as in M3. 
-        * **Results and Discussion**:​ Present ​detailed ​results with visualizations ​(graphs, tables) and discuss ​their implications. +        * **Results and Discussion**:​ Present results with visualisations ​(graphs, tables) and discuss implications. 
-        * **Conclusion**: ​Summarize the outcomes, limitationsand future ​work+        * **Conclusion**: ​Summarise ​outcomes, limitations and suggest directions for future ​research
-    * **Documentation**:​ Submit a polished, formal academic report in IEEE format (8 pages excluding references). +    * **Documentation ​(English, IEEE format)**: Submit a polished, formal academic report in IEEE format (8 pages excluding references). 
-    * **Upload Documentation**:​ [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49445|Upload]] +    * **Presentation ​(6 minutes)** - prepare ​concise, visually clear presentation covering: 
-    * **Presentation**: Prepare ​6 minute ​presentation covering: +        * The problem addressed and its relevance.
-        * The problem ​you addressed and its relevance.+
         * Key steps of your methodology.         * Key steps of your methodology.
-        * Experimental results and key contributions.+        * Experimental results and your main contributions.
         * Conclusions and potential areas for future research.         * Conclusions and potential areas for future research.
-      * Create ​well- polished slides with clear visuals, including figures, graphsand performance metrics. +      * **Presentations tips**: create ​well-polished slides with clear visuals, including figures, graphs and performance metrics. 
-    * **Evaluation**: ​Your presentation will be graded based on clarity, depth of explanation,​ the quality of results and the Q&A section. The final project grade will be weighted ​by your presentation quality. +    * **Evaluation**: ​The presentation will be graded based on clarity, depth of explanation,​ the quality of results and the Q&A section. The final project grade will be weighted ​based on the presentation quality. 
-    * **Upload ​Presentation**: [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49444|Upload]]+    * **Upload ​M4 (Documentation and Slides)**: [[https://​curs.upb.ro/​2025/​mod/​assign/​view.php?​id=24456|Upload]] ​must contain title and authors.
  
  
Line 118: Line 118:
     * M1 and M4 will have their grade (G) scaled by the score of the presentation (P): TOTAL = G * P      * M1 and M4 will have their grade (G) scaled by the score of the presentation (P): TOTAL = G * P 
  
-=== Examples of Project Ideas ===+---- 
 + 
 + 
 +==== Examples of Project Ideas ====
  
 === 1. Bad Posture Detection === === 1. Bad Posture Detection ===
dsm/assignments/01.1759677218.txt.gz · Last modified: 2025/10/05 18:13 by emilian.radoi
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0