Differences

This shows you the differences between two versions of the page.

Link to this comparison view

dsm:assignments:01 [2024/10/14 15:47]
emilian.radoi
dsm:assignments:01 [2025/01/04 15:32] (current)
emilian.radoi [Project]
Line 11: Line 11:
   * **Implement** their chosen project idea, building a model or system that addresses a specific medical data science problem.   * **Implement** their chosen project idea, building a model or system that addresses a specific medical data science problem.
   * **Evaluate** their approach using appropriate metrics (accuracy, precision, recall, etc.), and compare results to existing state-of-the-art methods.   * **Evaluate** their approach using appropriate metrics (accuracy, precision, recall, etc.), and compare results to existing state-of-the-art methods.
-  * **Document** their progress and findings in both a formal report and presentation.+  * **Document** their progress and findings in both a formal report and presentation, in **English**.
  
 ---- ----
Line 17: Line 17:
 === Milestones and Deliverables === === Milestones and Deliverables ===
  
-== 1. Milestone 1 (M1) - Related Work / State-of-the-Art Review (1p) ==+== 1. M1 (04.11.24) - Related Work / State-of-the-Art Review (1p) ==
   * **Objective**:​ Define the research context by reviewing and summarising related work in the area you are addressing.   * **Objective**:​ Define the research context by reviewing and summarising related work in the area you are addressing.
     * **Action Items**:     * **Action Items**:
Line 23: Line 23:
       * Summarise the current state-of-the-art methods in the field.       * Summarise the current state-of-the-art methods in the field.
       * Identify gaps in the research or areas for potential improvement.       * Identify gaps in the research or areas for potential improvement.
-    * **Documentation**:​ Create a report section (2 pages) detailing your findings, including citations of key papers and a discussion of how your project will build upon or differ from existing work.+    * **Documentation**:​ Create a report section (2 pages excluding references) detailing your findings, including citations of key papers and a discussion of how your project will build upon or differ from existing work, in **English**. 
 +    * **Upload Documentation**:​ [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49434|Upload]] (Must contain title and authors)
   ​   ​
-== 2. Milestone 2 (M2) - Dataset Collection and Baseline Results (1p) ==+== 2. M2 (18.11.24) - Dataset Collection and Baseline Results (1p) ==
   * **Objective**:​ Obtain the datasets required for your project and implement a baseline model for comparison.   * **Objective**:​ Obtain the datasets required for your project and implement a baseline model for comparison.
     * **Action Items**:     * **Action Items**:
Line 35: Line 36:
         * Obtain preliminary results to compare against future improvements.         * Obtain preliminary results to compare against future improvements.
       * **Evaluation Metrics**: Choose appropriate metrics (e.g., accuracy, F1-score, ROC-AUC) and document initial performance.       * **Evaluation Metrics**: Choose appropriate metrics (e.g., accuracy, F1-score, ROC-AUC) and document initial performance.
-    * **Documentation**:​ Submit a report section (approx. ​2 pages) describing the dataset, preprocessing steps, baseline model, and results.+    * **Documentation ** (IEEE conference paper format): Submit a report section (2 pages excluding references) describing the dataset, preprocessing steps, baseline model, and results. 
 +    * **Upload Documentation**:​ [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49438|Upload]]
  
-== 3. Milestone 3 (M3) - Own Contribution (1p) ==+== 3. M3 (18.12.24) - Own Contribution (1p) ==
   * **Objective**:​ Implement your novel contribution to the field, either by solving a new problem or improving an existing method.   * **Objective**:​ Implement your novel contribution to the field, either by solving a new problem or improving an existing method.
     * **Types of Contributions**:​     * **Types of Contributions**:​
-      ​* **Address a New Problem**: Tackle a medical data science issue that hasn’t ​been addressed by related work. +      * Address a New Problem: Tackle a medical data science issue that has not been addressed by related work. 
-      ​* **Improve Existing Methods**+      * Improve Existing Methods: 
-        ​* **Improve Results**: Enhance the performance of an existing solution by optimising models or experimenting with different techniques. +        * Improve Results: Enhance the performance of an existing solution by optimising models or experimenting with different techniques. 
-        ​* **Extensive Experiments**: Conduct extensive experiments to assess your model’s robustness, including testing with different datasets or under varying conditions. +        * Extensive Experiments:​ Conduct extensive experiments to assess your model’s robustness, including testing with different datasets or under varying conditions. 
-        ​* **New Approach**: Introduce a new method or architecture (e.g., switching from traditional CNNs to transformers),​ even if it doesn’t ​outperform state-of-the-art methods, as long as it provides a novel perspective. +        * New Approach: Introduce a new method or architecture (e.g., switching from traditional CNNs to transformers),​ even if it does not outperform state-of-the-art methods, as long as it provides a novel perspective. 
-          ​* **Examples**:+          * Examples:
             * Use a different deep learning architecture (e.g., ResNet vs. EfficientNet).             * Use a different deep learning architecture (e.g., ResNet vs. EfficientNet).
             * Apply a novel training strategy, such as self-supervised learning or data augmentation techniques.             * Apply a novel training strategy, such as self-supervised learning or data augmentation techniques.
             * Propose a hybrid model that combines multiple approaches (e.g., combining CNNs with decision trees).             * Propose a hybrid model that combines multiple approaches (e.g., combining CNNs with decision trees).
-    * **Documentation**:​ Write a report section (2 pages) detailing your contribution,​ how it differs from existing work, and your experimental results.+    * **Documentation** ​(IEEE conference paper format): Write a report section (2 pages excluding references**justifying your chosen approach**, ​detailing your contribution,​ how it differs from existing work, and comparing ​your experimental results ​to the baseline and state of the art. 
 +    * **Upload Documentation and code**: [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49446|Upload]]
  
-== 4. Milestone 4 (M4) - Project Report (1p) ==+== 4. M4 (08.01.25) - Project Report (1p) ==
   * **Objective**:​ Compile your project into a well-organised academic report.   * **Objective**:​ Compile your project into a well-organised academic report.
     * **Action Items**:     * **Action Items**:
Line 58: Line 61:
         * **Abstract**:​ Briefly summarize your project, contributions,​ and key findings.         * **Abstract**:​ Briefly summarize your project, contributions,​ and key findings.
         * **Introduction**:​ Explain the problem you are addressing, motivation, and background.         * **Introduction**:​ Explain the problem you are addressing, motivation, and background.
-        * **Related Work**: Include the summary from Milestone 1.+        * **Related Work**: Include the summary from M1.
         * **Methodology**:​ Detail your approach, including algorithms, models, and techniques used.         * **Methodology**:​ Detail your approach, including algorithms, models, and techniques used.
-        * **Experiments**:​ Describe the datasets, baseline methods, and results from Milestone 2+        * **Experiments**:​ Describe the datasets, baseline methods, and results from M2
-        * **Own Contribution**:​ Document your original contribution,​ as outlined in Milestone 3.+        * **Own Contribution**:​ Document your original contribution,​ as outlined in M3.
         * **Results and Discussion**:​ Present detailed results with visualizations (graphs, tables) and discuss their implications.         * **Results and Discussion**:​ Present detailed results with visualizations (graphs, tables) and discuss their implications.
         * **Conclusion**:​ Summarize the outcomes, limitations,​ and future work.         * **Conclusion**:​ Summarize the outcomes, limitations,​ and future work.
-    * **Documentation**:​ Submit a polished, formal academic report in IEEE format (6-8 pages).+    * **Documentation**:​ Submit a polished, formal academic report in IEEE format (8 pages excluding references). 
 +    * **Upload Documentation**:​ [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49445|Upload]]
  
-== 5. Milestone 5 (M5) - Project Presentation (percentage-based grading) ==+== 5. M5 (08.01.25) - Project Presentation (percentage-based grading) ==
   * **Objective**:​ Present your project and findings to the class.   * **Objective**:​ Present your project and findings to the class.
     * **Action Items**:     * **Action Items**:
-      * Prepare a 10-15 minute presentation covering:+      * Prepare a minute presentation covering:
         * The problem you addressed and its relevance.         * The problem you addressed and its relevance.
         * Key steps of your methodology.         * Key steps of your methodology.
         * Experimental results and key contributions.         * Experimental results and key contributions.
         * Conclusions and potential areas for future research.         * Conclusions and potential areas for future research.
-      * Create slides with clear visuals, including figures, graphs, and performance metrics. +      * Create ​well- polished ​slides with clear visuals, including figures, graphs, and performance metrics. 
-    * **Evaluation**:​ Your presentation will be graded based on clarity, depth of explanation, ​and the quality of results. The final project grade will be weighted by your presentation quality.+    * **Evaluation**:​ Your presentation will be graded based on clarity, depth of explanation,​ the quality of results ​and the Q&A section. The final project grade will be weighted by your presentation quality. 
 +    * **Upload Presentation**:​ [[https://​curs.upb.ro/​2024/​mod/​assign/​view.php?​id=49444|Upload]]
  
 ---- ----
Line 109: Line 114:
   * **Proposed Datasets**: MURA, RSNA etc.   * **Proposed Datasets**: MURA, RSNA etc.
  
-=== 5. Diabetes ​Detection ​=== +=== 5. Cancer ​Detection ​from Histopathology Images ​===
-  * **Objective**:​ Predict whether a patient has diabetes based on features like blood glucose levels and other health indicators. +
-  * **Potential Contribution**:​ Compare various machine learning techniques (e.g., logistic regression, decision trees, or neural networks). +
-  * **Proposed Dataset**: [[https://​www.kaggle.com/​datasets/​mathchi/​diabetes-data-set/​data|Diabetes Dataset]]. +
- +
-=== 6. Heart Disease Prediction === +
-  * **Objective**:​ Predict the likelihood of heart disease based on patient medical data. +
-  * **Potential Contribution**:​ Apply feature engineering and machine learning models (random forests, logistic regression) to improve prediction accuracy. +
-  * **Proposed Dataset**: UCI Heart Disease dataset. +
- +
-=== 7. COVID-19 Severity Prediction ​===+
   * **Objective**:​ Predict the severity of COVID-19 cases using patient data such as demographics,​ clinical tests, and symptoms.   * **Objective**:​ Predict the severity of COVID-19 cases using patient data such as demographics,​ clinical tests, and symptoms.
   * **Potential Contribution**:​ Use gradient boosting, random forests, or deep learning to predict hospitalization risk.   * **Potential Contribution**:​ Use gradient boosting, random forests, or deep learning to predict hospitalization risk.
-  * **Proposed Dataset**: ​Gather publicly available COVID-19 datasets (e.g., ​from Kaggle).+  * **Proposed Dataset**: ​Choose an appropriate one from [[https://​github.com/​maduc7/​Histopathology-Datasets|maduc7/​Histopathology-Datasets]]
  
-=== 8. Alzheimer’s Disease Progression Prediction ===+=== 6. Alzheimer’s Disease Progression Prediction ===
   * **Objective**:​ Predict the progression of Alzheimer’s disease using imaging (e.g., MRI) or genetic data.   * **Objective**:​ Predict the progression of Alzheimer’s disease using imaging (e.g., MRI) or genetic data.
   * **Potential Contribution**:​ Train deep learning models (e.g., 3D CNNs) to predict cognitive decline.   * **Potential Contribution**:​ Train deep learning models (e.g., 3D CNNs) to predict cognitive decline.
-  * **Proposed dataset**: [[https://​www.kaggle.com/​datasets/​ninadaithal/​imagesoasis|OASIS Alzheimer'​s Detection]].+  * **Proposed dataset**: [[https://​www.kaggle.com/​datasets/​ninadaithal/​imagesoasis|OASIS Alzheimer'​s Detection.]]
  
-=== 9Seizure Detection from EEG Data === +=== 7Interpretation of Knee MRI === 
-  * **Objective**: ​Detect epileptic seizures using EEG data to support ​automated ​diagnosis+  * **Objective**: ​Develop models for automated ​interpretation of knee MRs
-  * **Potential Contribution**: ​Train machine ​learning ​models to analyze EEG signals ​for seizure detection+  * **Potential Contribution**: ​Use transfer ​learning for improved performance on this dataset
-  * **Proposed ​datasets**: [[https://​www.ncbi.nlm.nih.gov/pmc/articles/PMC10235576/|Here]].+  * **Proposed ​dataset**: [[https://​www.kaggle.com/​datasets/​cjinny/​mrnet-v1|MRNet - Kaggle.]] [[https://stanfordmlgroup.github.io/​competitions/​mrnet/|MRNet]]
  
-=== 10. Your own project ===+=== 8. Your own project ===
   * **Objective**:​ -   * **Objective**:​ -
   * **Potential Contribution**:​ -   * **Potential Contribution**:​ -
   * **Proposed datasets**: -   * **Proposed datasets**: -
  
dsm/assignments/01.1728910057.txt.gz · Last modified: 2024/10/14 15:47 by emilian.radoi
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0