Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sasc:laboratoare:03 [2017/03/07 15:29]
dan.dragan
sasc:laboratoare:03 [2017/03/07 15:32] (current)
dan.dragan
Line 2: Line 2:
  
  
-==== Exercise 1 (2p) ====+==== Exercise 1 (4p) ====
  
 In this exercise we'll try to break a Linear Congruential Generator, that may be used to generate "​poor"​ random numbers. In this exercise we'll try to break a Linear Congruential Generator, that may be used to generate "​poor"​ random numbers.
Line 103: Line 103:
 </​code>​ </​code>​
  
 +==== Exercise 2 (3p) ====
  
-==== Exercise ​- LFSR (2p) ====+Let's use the experiment defined earlier as a pseudorandom generator ($\mathsf{PRG}$) as follows: 
 +  - Set a desired output length $n$ 
 +  - Obtain a random sequence $R$ of bits of length $n$ (e.g. using the Linear-congruential generator from Exercise 1) 
 +  - For each bit $r$ in the random sequence $R$ generated in the previous step, output a bit $b$ as follows: 
 +  * if the bit $r$ is $0$, then output a random bit $b \in \{0, 1\}$ 
 +  * if the bit $r$ is $1$, then output $1$ 
 + 
 +a. Implement the frequency (monobit) test from [[http://​csrc.nist.gov/​publications/​nistpubs/​800-22-rev1a/​SP800-22rev1a.pdf | NIST (see section 2.1)]] and check if a sequence generated by the above $\mathsf{PRG}$ (say $n=100$) seems random or not. 
 + 
 +b. Run the test on a random bitstring (e.g. a string such as R used by the above $\mathsf{PRG}$),​ and compare the result of the test. 
 + 
 +If the two results are different across many iterations, this test already gives you an attacker that breaks the $\mathsf{PRG}$. 
 + 
 +<note tip>You may use a function like this to generate a random bitstring</​note>​ 
 +<code python>​ 
 +import random 
 + 
 +def get_random_string(n):​ #generate random bit string 
 +  bstr = bin(random.getrandbits(n)).lstrip('​0b'​).zfill(n) 
 +  return bstr 
 +</​code>​ 
 + 
 +<note tip>​Also,​ in Python you may find the functions sqrt, fabs and erfc from the module math useful</​note>​ 
 + 
 +==== Exercise ​- LFSR (3p) ====
  
 In this exercise we'll build a simple Linear Feedback Shift Register (LFSR). LFSRs produce random bit strings with good statistical properties, but are very easy to predict. In this exercise we'll build a simple Linear Feedback Shift Register (LFSR). LFSRs produce random bit strings with good statistical properties, but are very easy to predict.
sasc/laboratoare/03.1488893366.txt.gz · Last modified: 2017/03/07 15:29 by dan.dragan
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0