Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sasc:laboratoare:03 [2017/03/06 12:46]
dan.dragan
sasc:laboratoare:03 [2017/03/07 15:32] (current)
dan.dragan
Line 2: Line 2:
  
  
-==== Exercise 1 (2p) ====+==== Exercise 1 (4p) ====
  
 In this exercise we'll try to break a Linear Congruential Generator, that may be used to generate "​poor"​ random numbers. In this exercise we'll try to break a Linear Congruential Generator, that may be used to generate "​poor"​ random numbers.
Line 103: Line 103:
 </​code>​ </​code>​
  
 +==== Exercise 2 (3p) ====
  
-==== Exercise ​- LFSR (2p) ====+Let's use the experiment defined earlier as a pseudorandom generator ($\mathsf{PRG}$) as follows: 
 +  - Set a desired output length $n$ 
 +  - Obtain a random sequence $R$ of bits of length $n$ (e.g. using the Linear-congruential generator from Exercise 1) 
 +  - For each bit $r$ in the random sequence $R$ generated in the previous step, output a bit $b$ as follows: 
 +  * if the bit $r$ is $0$, then output a random bit $b \in \{0, 1\}$ 
 +  * if the bit $r$ is $1$, then output $1$ 
 + 
 +a. Implement the frequency (monobit) test from [[http://​csrc.nist.gov/​publications/​nistpubs/​800-22-rev1a/​SP800-22rev1a.pdf | NIST (see section 2.1)]] and check if a sequence generated by the above $\mathsf{PRG}$ (say $n=100$) seems random or not. 
 + 
 +b. Run the test on a random bitstring (e.g. a string such as R used by the above $\mathsf{PRG}$),​ and compare the result of the test. 
 + 
 +If the two results are different across many iterations, this test already gives you an attacker that breaks the $\mathsf{PRG}$. 
 + 
 +<note tip>You may use a function like this to generate a random bitstring</​note>​ 
 +<code python>​ 
 +import random 
 + 
 +def get_random_string(n):​ #generate random bit string 
 +  bstr = bin(random.getrandbits(n)).lstrip('​0b'​).zfill(n) 
 +  return bstr 
 +</​code>​ 
 + 
 +<note tip>​Also,​ in Python you may find the functions sqrt, fabs and erfc from the module math useful</​note>​ 
 + 
 +==== Exercise ​- LFSR (3p) ====
  
 In this exercise we'll build a simple Linear Feedback Shift Register (LFSR). LFSRs produce random bit strings with good statistical properties, but are very easy to predict. In this exercise we'll build a simple Linear Feedback Shift Register (LFSR). LFSRs produce random bit strings with good statistical properties, but are very easy to predict.
Line 127: Line 152:
  
 Using the above starting state and polynomial, generate $100$ random bits and run the monobit statistical test from the previous exercise to see if their frequency seems random. Using the above starting state and polynomial, generate $100$ random bits and run the monobit statistical test from the previous exercise to see if their frequency seems random.
- 
- 
-==== Exercise 3 ==== 
- 
-Let's analyse some substitution-permutation networks (SPN). 
- 
-=== SPN 1 (3p) === 
- 
-We have the SPN from this figure: 
-{{:​sasc:​laboratoare:​spn_1r_reduced_2s.png|}} 
- 
-where S denotes the AES S-box (we'll discuss this in some detail during the next lecture), and '​Permutation'​ is a simple permutation block that simply shifts the input 4 bits to the right as in a queue. Both this S-box and the permutation are invertible and known by the attacker (you). Each input (x1, x2) is 8-bit (1 byte), as well as the keys k1, k2, and the outputs y1, y2. 
- 
-  - How can you find the key ? 
-  - Given the message/​ciphertext pair ('​Hi'​ - as characters, 0xba52 - as hex number), find the key bytes k1 and k2. Print them in ascii. 
- 
-<note tip> 
-For these exercises you can use the following helper/​starter code: 
-</​note>​ 
- 
-<​code>​ 
-import sys 
-import random 
-import string 
-import operator 
- 
-# Rijndael S-box 
-sbox =  [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 
-        0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 
-        0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 
-        0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 
-        0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 
-        0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 
-        0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 
-        0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 
-        0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 
-        0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 
-        0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 
-        0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 
-        0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 
-        0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 
-        0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 
-        0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 
-        0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 
-        0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 
-        0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 
-        0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 
-        0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 
-        0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 
-        0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 
-        0x54, 0xbb, 0x16] 
- 
- 
-# Rijndael Inverted S-box 
-rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 
-        0x9e, 0x81, 0xf3, 0xd7, 0xfb , 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 
-        0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb , 0x54, 
-        0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 
-        0x42, 0xfa, 0xc3, 0x4e , 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 
-        0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 , 0x72, 0xf8, 
-        0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 
-        0x65, 0xb6, 0x92 , 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 
-        0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 , 0x90, 0xd8, 0xab, 
-        0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 
-        0x45, 0x06 , 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 
-        0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b , 0x3a, 0x91, 0x11, 0x41, 
-        0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 
-        0x73 , 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 
-        0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e , 0x47, 0xf1, 0x1a, 0x71, 0x1d, 
-        0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b , 
-        0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 
-        0xfe, 0x78, 0xcd, 0x5a, 0xf4 , 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 
-        0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f , 0x60, 
-        0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 
-        0x93, 0xc9, 0x9c, 0xef , 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 
-        0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 , 0x17, 0x2b, 
-        0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 
-        0x21, 0x0c, 0x7d] 
- 
-def strxor(a, b): # xor two strings (trims the longer input) 
-  return ""​.join([chr(ord(x) ^ ord(y)) for (x, y) in zip(a, b)]) 
- 
-def hexxor(a, b): # xor two hex strings (trims the longer input) 
-  ha = a.decode('​hex'​) 
-  hb = b.decode('​hex'​) 
-  return ""​.join([chr(ord(x) ^ ord(y)).encode('​hex'​) for (x, y) in zip(ha, hb)]) 
- 
-def bitxor(a, b): # xor two bit strings (trims the longer input) 
-  return ""​.join([str(int(x)^int(y)) for (x, y) in zip(a, b)]) 
-  ​ 
-def str2bin(ss):​ 
-  """​ 
-    Transform a string (e.g. '​Hello'​) into a string of bits 
-  """​ 
-  bs = ''​ 
-  for c in ss: 
-    bs = bs + bin(ord(c))[2:​].zfill(8) 
-  return bs 
- 
-def hex2bin(hs):​ 
-  """​ 
-    Transform a hex string (e.g. '​a2'​) into a string of bits (e.g.10100010) 
-  """​ 
-  bs = ''​ 
-  for c in hs: 
-    bs = bs + bin(int(c,​16))[2:​].zfill(4) 
-  return bs 
- 
-def bin2hex(bs):​ 
-  """​ 
-    Transform a bit string into a hex string 
-  """​ 
-  return hex(int(bs,​2))[2:​] 
- 
-def byte2bin(bval):​ 
-  """​ 
-    Transform a byte (8-bit) value into a bitstring 
-  """​ 
-  return bin(bval)[2:​].zfill(8) 
- 
- 
-def permute4(s):​ 
-  """​ 
-    Perform a permutatation by shifting all bits 4 positions right. 
-    The input is assumed to be a 16-bit bitstring 
-  """​ 
-  ps = ''​ 
-  ps = ps + s[12:16] 
-  ps = ps + s[0:12] 
-  return ps 
- 
-def permute_inv4(s):​ 
-  """​ 
-    Perform the inverse of permute4 
-    The input is assumed to be a 16-bit bitstring 
-  """​ 
-  ps = ''​ 
-  ps = ps + s[4:16] 
-  ps = ps + s[0:4] 
-  return ps 
- 
-def spn_1r_reduced_2s(k,​ x): 
-  """​ 
-    Performs an encryption with a substitution-permutation network. 
-    Key k = {k1, k2}, total of 16 bits (2 x 8 bits) 
-    Input x = {x1, x2}, total of 16 bits (2 x 8 bits) 
-    Both k and x are assumed to be bitstrings. 
- 
-    Return: 
-    a 16-bit bitstring containing the encryption y = {y1, y2} 
-  """​ 
- 
-  # Split input and key 
-  x1 = x[0:8] 
-  x2 = x[8:16] 
-  k1 = k[0:8] 
-  k2 = k[8:16] 
- 
-  #Apply S-box 
-  u1 = bitxor(x1, k1) 
-  v1 = sbox[int(u1,​2)] 
-  v1 = byte2bin(v1) 
- 
-  u2 = bitxor(x2, k2) 
-  v2 = sbox[int(u2,​2)] 
-  v2 = byte2bin(v2) 
- 
-  #Apply permutation 
-  pin = v1 + v2 
-  pout = permute4(pin) 
- 
-  return pout 
-  ​ 
-def spn_1r_full_2s(k,​ x): 
-  """​ 
-    Performs an encryption with a substitution-permutation network. 
-    Key k = {k1, k2, k3, k4}, total of 32 bits (4 x 8 bits) 
-    Input x = {x1, x2}, total of 16 bits (2 x 8 bits) 
-    Both k and x are assumed to be bitstrings. 
- 
-    Return: 
-    a 16-bit bitstring containing the encryption y = {y1, y2} 
-  """​ 
- 
-  # Split input and key 
-  x1 = x[0:8] 
-  x2 = x[8:16] 
-  k1 = k[0:8] 
-  k2 = k[8:16] 
-  k3 = k[16:24] 
-  k4 = k[24:32] 
- 
-  #Apply S-box 
-  u1 = bitxor(x1, k1) 
-  v1 = sbox[int(u1,​2)] 
-  v1 = byte2bin(v1) 
- 
-  u2 = bitxor(x2, k2) 
-  v2 = sbox[int(u2,​2)] 
-  v2 = byte2bin(v2) 
- 
-  #Apply permutation 
-  pin = v1 + v2 
-  pout = permute4(pin) 
- 
-  #Apply final XOR 
-  po1 = pout[0:8] 
-  po2 = pout[8:16] 
-  y1 = bitxor(po1, k3) 
-  y2 = bitxor(po2, k4) 
- 
-  return y1+y2 
-  ​ 
-def main(): 
- 
-  #Run reduced 2-byte SPN 
-  msg = '​Hi'​ 
-  key = '??'​ # Find this 
-  xs = str2bin(msg) 
-  ks = str2bin(key) 
-  ys = spn_1r_reduced_2s(ks,​ xs) 
-  print 'Two y halves of reduced SPN: ' + ys[0:8] + ' (hex: ' + bin2hex(ys[0:​8]) + '), ' + ys[8:16] + ' (hex: ' + bin2hex(ys[8:​16]) + '​)'​ 
- 
-  #Run full 2-byte SPN 
-  msg = '​Om'​ 
-  key = '????'​ # Find this 
-  xs = str2bin(msg) 
-  ks = str2bin(key) 
-  ys = spn_1r_full_2s(ks,​ xs) 
-  print 'Two y halves of full SPN (2 bytes): ' + ys[0:8] + ' (hex: ' + bin2hex(ys[0:​8]) + '), ' + ys[8:16] + ' (hex: ' + bin2hex(ys[8:​16]) + '​)'​ 
- 
- 
- 
-if __name__ == "​__main__":​ 
-  main() ​   ​ 
-</​code>​ 
- 
-==== SPN 2 (3p) ==== 
- 
-Now we have a better SPN, where the output of the permutation is XOR-ed with another 2 key bytes, as in the following figure: 
-{{:​sasc:​laboratoare:​spn_1r_full_2s.png|}} 
- 
-  - Try to find the key in this case, when given the following message/​ciphertext pairs: ('​Om',​ 0x0073), ('​El',​ 0xd00e), ('​an',​ 0x855b). Print the key in ascii. 
- 
-<note tip>You may try some kind of brute-force search</​note>​ 
sasc/laboratoare/03.1488797207.txt.gz · Last modified: 2017/03/06 12:46 by dan.dragan
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0