Differences

This shows you the differences between two versions of the page.

Link to this comparison view

ewis:laboratoare:11 [2021/05/05 13:06]
alexandru.predescu [Requirements]
ewis:laboratoare:11 [2023/04/26 19:18] (current)
alexandru.predescu [Resources]
Line 11: Line 11:
 <note important>​ <note important>​
 An algorithm can be selected by at most 3 students. An algorithm can be selected by at most 3 students.
-If you choose an algorithm that was used in the Laboratory, you will have to use an additional ​dataset ​and compare ​the results.+  * If you choose an algorithm that was used in the Laboratory, you will have to use another ​dataset
 +  * If you choose another algorithm, you can also use a dataset from the Laboratory.
 </​note>​ </​note>​
  
Line 32: Line 33:
  
 Describe the outcome of the case study and applications in real world scenarios in broader terms. Describe the outcome of the case study and applications in real world scenarios in broader terms.
 +
 +=== Resources ===
 +
 +Present the resources used for the case study: algorithm, data sets and other references
  
 ==== Resources ==== ==== Resources ====
Line 41: Line 46:
 Useful libraries for data science in Python include: Useful libraries for data science in Python include:
  
-**[Machine Learning]**+**Machine Learning**
   * [[https://​scikit-learn.org/​stable/​|Scikit-learn]]   * [[https://​scikit-learn.org/​stable/​|Scikit-learn]]
 +
 +**Deep Learning**
   * [[https://​www.tensorflow.org/​learn|TensorFlow]]   * [[https://​www.tensorflow.org/​learn|TensorFlow]]
   * [[https://​keras.io/​|Keras]]   * [[https://​keras.io/​|Keras]]
  
-**[Data Processing]**+**Data Processing**
   * [[https://​pandas.pydata.org/​|Pandas]]   * [[https://​pandas.pydata.org/​|Pandas]]
   * [[https://​numpy.org/​|NumPy]]   * [[https://​numpy.org/​|NumPy]]
   * [[https://​www.scipy.org/​|SciPy]]   * [[https://​www.scipy.org/​|SciPy]]
  
-**[Visualizations]**+**Visualizations**
   * [[https://​matplotlib.org/​|matplotlib]]   * [[https://​matplotlib.org/​|matplotlib]]
   * [[https://​seaborn.pydata.org/​|Seaborn]]   * [[https://​seaborn.pydata.org/​|Seaborn]]
Line 65: Line 72:
 You can use any open dataset. Some common sources include: You can use any open dataset. Some common sources include:
  
-**[Dataset aggregators for Machine Learning projects]**+**Dataset aggregators for Machine Learning projects**
   * [[https://​www.kaggle.com/​datasets|Kaggle]]   * [[https://​www.kaggle.com/​datasets|Kaggle]]
   * [[https://​data-flair.training/​blogs/​machine-learning-datasets/​|Data Flair]]   * [[https://​data-flair.training/​blogs/​machine-learning-datasets/​|Data Flair]]
   * [[https://​www.openml.org/​search?​type=data|OpenML]]   * [[https://​www.openml.org/​search?​type=data|OpenML]]
 +  * [[https://​archive.ics.uci.edu/​ml/​datasets.php|UCI Machine Learning Repository]]
  
-**[Open Data]**+**Open ​Datasets**
   * [[https://​data.europa.eu/​data/​datasets?​locale=data&​minScoring=0|data.europa.eu]]   * [[https://​data.europa.eu/​data/​datasets?​locale=data&​minScoring=0|data.europa.eu]]
   * [[https://​data.worldbank.org/​|World Bank Open Data]]   * [[https://​data.worldbank.org/​|World Bank Open Data]]
ewis/laboratoare/11.1620209206.txt.gz · Last modified: 2021/05/05 13:06 by alexandru.predescu
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0