Differences

This shows you the differences between two versions of the page.

Link to this comparison view

ewis:laboratoare:11 [2021/05/05 13:03]
alexandru.predescu
ewis:laboratoare:11 [2023/04/26 19:18] (current)
alexandru.predescu [Resources]
Line 1: Line 1:
-====== Lab 11. Project / Case Study ======+===== Lab 11. Project / Case Study =====
  
 This week is for working on the laboratory project and preparing the final presentation. This week is for working on the laboratory project and preparing the final presentation.
-===== Requirements ​=====+==== Requirements ====
  
 Select an algorithm and a dataset to make a presentation / case study of 10-25 slides. Select an algorithm and a dataset to make a presentation / case study of 10-25 slides.
Line 11: Line 11:
 <note important>​ <note important>​
 An algorithm can be selected by at most 3 students. An algorithm can be selected by at most 3 students.
-If you choose an algorithm that was used in the Laboratory, you will have to use an additional ​dataset ​and compare ​the results.+  * If you choose an algorithm that was used in the Laboratory, you will have to use another ​dataset
 +  * If you choose another algorithm, you can also use a dataset from the Laboratory.
 </​note>​ </​note>​
  
 The structure of the presentation should be as follows: The structure of the presentation should be as follows:
  
-==== Introduction ​====+=== Introduction ===
  
-Describe the context of your case study. Introduce the algorithm and possible applications+Describe the context of your case study. Introduce the algorithm and possible applications ​in real world scenarios.
  
-==== Methodology ​====+=== Methodology ===
  
-Describe the algorithm in more detail (text, pseudocode, flowcharts) and the way it can be used on a real data set.+Describe the algorithm in more detail (text, pseudocode, flowcharts), with use cases and methods for working with real data sets.
  
-==== Case Study ====+=== Case Study ===
  
 Describe the selected data set(s) and the implementation of the algorithm in Python. Describe the selected data set(s) and the implementation of the algorithm in Python.
 Present the results (text and visual output) and your observations. Present the results (text and visual output) and your observations.
  
-==== Conclusion ​====+=== Conclusion ===
  
 Describe the outcome of the case study and applications in real world scenarios in broader terms. Describe the outcome of the case study and applications in real world scenarios in broader terms.
  
-===== Resources ​=====+=== Resources ===
  
-==== Algorithms and Libraries ​====+Present the resources used for the case study: algorithm, data sets and other references 
 + 
 +==== Resources ==== 
 + 
 +=== Algorithms and Libraries ===
  
 You can refer to the Laboratories or use any other implementation in Python. You can refer to the Laboratories or use any other implementation in Python.
Line 41: Line 46:
 Useful libraries for data science in Python include: Useful libraries for data science in Python include:
  
-=== [Machine Learning] ===+**Machine Learning**
   * [[https://​scikit-learn.org/​stable/​|Scikit-learn]]   * [[https://​scikit-learn.org/​stable/​|Scikit-learn]]
 +
 +**Deep Learning**
   * [[https://​www.tensorflow.org/​learn|TensorFlow]]   * [[https://​www.tensorflow.org/​learn|TensorFlow]]
   * [[https://​keras.io/​|Keras]]   * [[https://​keras.io/​|Keras]]
  
-=== [Data Processing] ===+**Data Processing**
   * [[https://​pandas.pydata.org/​|Pandas]]   * [[https://​pandas.pydata.org/​|Pandas]]
   * [[https://​numpy.org/​|NumPy]]   * [[https://​numpy.org/​|NumPy]]
   * [[https://​www.scipy.org/​|SciPy]]   * [[https://​www.scipy.org/​|SciPy]]
  
-=== [Visualizations] ===+**Visualizations**
   * [[https://​matplotlib.org/​|matplotlib]]   * [[https://​matplotlib.org/​|matplotlib]]
   * [[https://​seaborn.pydata.org/​|Seaborn]]   * [[https://​seaborn.pydata.org/​|Seaborn]]
Line 61: Line 68:
   * [[https://​machinelearningmastery.com/​clustering-algorithms-with-python/​|Machine Learning Mastery]]   * [[https://​machinelearningmastery.com/​clustering-algorithms-with-python/​|Machine Learning Mastery]]
  
-==== Datasets ​====+=== Datasets ===
  
 You can use any open dataset. Some common sources include: You can use any open dataset. Some common sources include:
  
-=== [Dataset aggregators for Machine Learning projects] ===+**Dataset aggregators for Machine Learning projects**
   * [[https://​www.kaggle.com/​datasets|Kaggle]]   * [[https://​www.kaggle.com/​datasets|Kaggle]]
   * [[https://​data-flair.training/​blogs/​machine-learning-datasets/​|Data Flair]]   * [[https://​data-flair.training/​blogs/​machine-learning-datasets/​|Data Flair]]
   * [[https://​www.openml.org/​search?​type=data|OpenML]]   * [[https://​www.openml.org/​search?​type=data|OpenML]]
 +  * [[https://​archive.ics.uci.edu/​ml/​datasets.php|UCI Machine Learning Repository]]
  
-=== [Open Data] ===+**Open Datasets**
   * [[https://​data.europa.eu/​data/​datasets?​locale=data&​minScoring=0|data.europa.eu]]   * [[https://​data.europa.eu/​data/​datasets?​locale=data&​minScoring=0|data.europa.eu]]
   * [[https://​data.worldbank.org/​|World Bank Open Data]]   * [[https://​data.worldbank.org/​|World Bank Open Data]]
ewis/laboratoare/11.1620209004.txt.gz · Last modified: 2021/05/05 13:03 by alexandru.predescu
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0