Differences

This shows you the differences between two versions of the page.

Link to this comparison view

ewis:laboratoare:11 [2021/05/05 12:44]
alexandru.predescu [Requirements]
ewis:laboratoare:11 [2023/04/26 19:18] (current)
alexandru.predescu [Resources]
Line 1: Line 1:
 ===== Lab 11. Project / Case Study ===== ===== Lab 11. Project / Case Study =====
  
 +This week is for working on the laboratory project and preparing the final presentation.
 ==== Requirements ==== ==== Requirements ====
  
 Select an algorithm and a dataset to make a presentation / case study of 10-25 slides. Select an algorithm and a dataset to make a presentation / case study of 10-25 slides.
 The combination of an algorithm and a dataset has to be unique for each student. The combination of an algorithm and a dataset has to be unique for each student.
 +
 +**The list of algorithms can be found on MS Teams / Laboratory channel**
  
 <note important>​ <note important>​
 An algorithm can be selected by at most 3 students. An algorithm can be selected by at most 3 students.
-If you choose an algorithm that was used in the Laboratory, you will have to use an additional ​dataset ​and compare ​the results.+  * If you choose an algorithm that was used in the Laboratory, you will have to use another ​dataset
 +  * If you choose another algorithm, you can also use a dataset from the Laboratory.
 </​note>​ </​note>​
  
Line 15: Line 19:
 === Introduction === === Introduction ===
  
-Describe the context of your case study. Introduce the algorithm and possible applications+Describe the context of your case study. Introduce the algorithm and possible applications ​in real world scenarios.
  
 === Methodology === === Methodology ===
  
-Describe the algorithm in more detail (text, pseudocode, flowcharts) and the way it can be used on a real data set.+Describe the algorithm in more detail (text, pseudocode, flowcharts), with use cases and methods for working with real data sets.
  
 === Case Study === === Case Study ===
Line 29: Line 33:
  
 Describe the outcome of the case study and applications in real world scenarios in broader terms. Describe the outcome of the case study and applications in real world scenarios in broader terms.
 +
 +=== Resources ===
 +
 +Present the resources used for the case study: algorithm, data sets and other references
  
 ==== Resources ==== ==== Resources ====
Line 38: Line 46:
 Useful libraries for data science in Python include: Useful libraries for data science in Python include:
  
-== [Machine Learning] ==+**Machine Learning**
   * [[https://​scikit-learn.org/​stable/​|Scikit-learn]]   * [[https://​scikit-learn.org/​stable/​|Scikit-learn]]
 +
 +**Deep Learning**
   * [[https://​www.tensorflow.org/​learn|TensorFlow]]   * [[https://​www.tensorflow.org/​learn|TensorFlow]]
   * [[https://​keras.io/​|Keras]]   * [[https://​keras.io/​|Keras]]
  
-== [Data Processing] ==+**Data Processing**
   * [[https://​pandas.pydata.org/​|Pandas]]   * [[https://​pandas.pydata.org/​|Pandas]]
   * [[https://​numpy.org/​|NumPy]]   * [[https://​numpy.org/​|NumPy]]
   * [[https://​www.scipy.org/​|SciPy]]   * [[https://​www.scipy.org/​|SciPy]]
  
-== [Visualizations] ==+**Visualizations**
   * [[https://​matplotlib.org/​|matplotlib]]   * [[https://​matplotlib.org/​|matplotlib]]
   * [[https://​seaborn.pydata.org/​|Seaborn]]   * [[https://​seaborn.pydata.org/​|Seaborn]]
Line 56: Line 66:
  
   * [[https://​www.analyticsvidhya.com/​blog/​2017/​09/​common-machine-learning-algorithms/​|Analytics Vidhya]]   * [[https://​www.analyticsvidhya.com/​blog/​2017/​09/​common-machine-learning-algorithms/​|Analytics Vidhya]]
 +  * [[https://​machinelearningmastery.com/​clustering-algorithms-with-python/​|Machine Learning Mastery]]
  
 === Datasets === === Datasets ===
Line 61: Line 72:
 You can use any open dataset. Some common sources include: You can use any open dataset. Some common sources include:
  
-== [Dataset aggregators for Machine Learning projects] ==+**Dataset aggregators for Machine Learning projects**
   * [[https://​www.kaggle.com/​datasets|Kaggle]]   * [[https://​www.kaggle.com/​datasets|Kaggle]]
   * [[https://​data-flair.training/​blogs/​machine-learning-datasets/​|Data Flair]]   * [[https://​data-flair.training/​blogs/​machine-learning-datasets/​|Data Flair]]
   * [[https://​www.openml.org/​search?​type=data|OpenML]]   * [[https://​www.openml.org/​search?​type=data|OpenML]]
 +  * [[https://​archive.ics.uci.edu/​ml/​datasets.php|UCI Machine Learning Repository]]
  
-== [Open Data] ==+**Open Datasets**
   * [[https://​data.europa.eu/​data/​datasets?​locale=data&​minScoring=0|data.europa.eu]]   * [[https://​data.europa.eu/​data/​datasets?​locale=data&​minScoring=0|data.europa.eu]]
   * [[https://​data.worldbank.org/​|World Bank Open Data]]   * [[https://​data.worldbank.org/​|World Bank Open Data]]
ewis/laboratoare/11.1620207846.txt.gz · Last modified: 2021/05/05 12:44 by alexandru.predescu
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0