Rularea aplicațiilor

Pornirea unei aplicații înseamnă că se alocă resursele sistemului (procesor, memorie, dispozitive de intrare/ieșire) pentru a rula aplicația. O aplicație care rulează, adică folosește resursele sistemului pentru a executa cod și a prelucra date, se numește proces. Atunci când pornim o aplicație, se creează un proces; atunci când oprim aplicația, sau când își încheie execuția, ne referim la încheierea execuției procesului.

Procesul este pornit dintr-un fișier executabil care conține codul (instrucțiunile) și datele aplicației. Fișierul executabil mai este numit și imaginea procesului. Fișierul executabil este un program. Spunem că procesul este un program aflat în execuție1).

Identificarea fișierului executabil al unei aplicații

Fișierul executabil al unei aplicații este încărcat în memoria sistemului și codul este executat; din acest moment spunem că aplicația rulează.

De exemplu aplicația Firefox (browser web) are asociat fișierul executabil /usr/bin/firefox; aplicația Vim (editor) are asociat fișierul executabil /usr/bin/vim; aplicația nano (editor de text) are asociat fișierul executabil /usr/bin/nano. Putem identifica fișierul executabil al unei aplicații folosind comanda which, urmată de comanda pentru pornirea aplicației ca mai jos:

student@uso:~$ which firefox
/usr/bin/firefox
student@uso:~$ which vim
/usr/bin/vim
student@uso:~$ which nano
/usr/bin/nano

Exercițiu: Identificați fișierul executabil al aplicațiilor / utilitarelor shutter, gedit, ls, df.

Investigarea proceselor

Un sistem de operare are de obicei mai multe aplicații care rulează, deci mai multe procese. Prea multe procese pot duce la o încărcare prea mare a sistemului, încetinind sau împiedicând funcționarea acestuia. Anumite procese pot consuma excesiv resurse afectând celelalte procese. De aceea, este util să investigăm procesele unui sistem și consumul de resurse al acestora.

Listarea proceselor

La nivel mai degrabă didactic, putem vizualiza lista de procese a unui sistem. Utilitarul ps afișează procesele curente în sistem (un snapshot al proceselor sistemului). La o rulare simplă, utilitarul ps afișează procesele din terminalul curent:

student@uso:~$ ps
  PID TTY          TIME CMD
14897 pts/4    00:00:00 bash
14910 pts/4    00:00:00 ps

În terminalul curent (indicat de coloana TTY din afișare, adică terminalul pts/4) sunt două procese:

  1. procesul shell (bash) în care rulăm comenzi care creează noi procese;
  2. procesul de listare (ps) pe care tocmai l-am lansat prin comanda ps; practic se afișează pe sine

Pentru a afișa toate procesele sistemului folosim opțiunea -e (pentru everything) a utilitarului ps ca în comanda de mai jos:

student@uso:~$ ps -e
  PID TTY          TIME CMD
    1 ?        00:00:19 systemd
    2 ?        00:00:00 kthreadd
    4 ?        00:00:00 kworker/0:0H
    6 ?        00:00:00 mm_percpu_wq
    7 ?        00:00:09 ksoftirqd/0
    8 ?        00:00:06 rcu_sched
    9 ?        00:00:00 rcu_bh
   10 ?        00:00:00 migration/0
   11 ?        00:00:00 watchdog/0
[...]

Ierarhia proceselor

Un proces este creat de un alt proces. De exemplu, mai sus, procesul ps a fost creat dintr-un proces shell (bash). Procesul shell a fost, la rândul său, creat de un alt proces. Un proces are un proces părinte; un proces poate avea mai multe procese copil. Procesele sunt, așadar, parte dintr-o ierarhie.

Pentru a vizualiza ierarhia de procese, folosim utilitarul pstree:

student@uso:~$ pstree
systemd-+-ModemManager---2*[{ModemManager}]
        |-NetworkManager-+-2*[dhclient]
        |                `-2*[{NetworkManager}]
        [...]
        |-acpid
        |-avahi-daemon---avahi-daemon
        |-boltd---2*[{boltd}]
        |-colord---2*[{colord}]
        |-cron
        [...]
        |-systemd-+-(sd-pam)
        |         |-gnome-terminal--+-bash
        |         |                 `-3*[{gnome-terminal-}]
        [...]

În vârful ierarhiei de procese este procesul numit clasic init. În listarea de mai sus vedem că procesul din vârful ierarhiei este systemd. systemd2) este implementarea de init prezentă în cea mai mare parte a distribuțiilor Linux curente3).

Atributele proceselor

Utilitarul ps are o afișare tabelară a proceselor, fiecare coloană corespunzând unui atribut al proceselor. La o rulare simplă, așa cum am văzut mai sus sunt afișate patru coloane:

  • PID: reprezentând identificatorul procesului
  • TTY: terminalul în care rulează procesul (apare ? pentru un proces care nu are terminal - în general procesele de tip serviciu, numite și procese daemon nu au terminal)
  • TIME: timpul de rulare pe procesor (în ore, minute, secunde)
  • CMD: numele imaginii de proces (adică numele executabilului / programului din care a fost creat procesul)

Identificarea unui proces

PID (Process Id) este atributul esențial al procesului, un index care identifică procesul la nivelul sistemului. Un proces este identificat după PID, nu după numele executabilului (CMD). Putem avea mai multe procese create din același executabil, fiecare proces având PID-ul său4).

Pentru a verifica existența mai multor procese, o să creăm mai multe procese shell. Pentru început, deschidem mai multe sesiuni de terminal, folosind, de exemplu, Alt+F2 în mediul grafic și introducând comanda gnome-terminal în promptul creat. Apoi vizualizăm doar procesele create din executabilul bash rulând comanda:

student@uso:~$ ps -e | grep bash
 2181 pts/1    00:00:00 bash
 2194 pts/2    00:00:00 bash
 2205 pts/3    00:00:00 bash
14750 pts/0    00:00:00 bash
14897 pts/4    00:00:00 bash

Obținem un rezultat precum cel de mai sus. Sunt cinci procese, toate create din executabilul bash, cu cinci PID-uri diferite: 2181, 2194, 2205, 14705, 14879.

Afișarea atributelor unui proces

Un proces are mai mult decât cele patru atribute afișate la o rulare simplă a utilitarului ps. Pentru a afișa mai multe atribute, folosim opțiunea -f (de la full format) sau opțiunea -F (de la extra full format), ca mai jos:

student@uso:~$ ps -f
UID        PID  PPID  C STIME TTY          TIME CMD
student  14897 14896  0 17:12 pts/4    00:00:00 -bash
student  15026 14897  0 17:46 pts/4    00:00:00 ps -f
 
student@uso:~$ ps -F
UID        PID  PPID  C    SZ   RSS PSR STIME TTY          TIME CMD
student  14897 14896  0  6056  5136   0 17:12 pts/4    00:00:00 -bash
student  15027 14897  0  9728  3340   0 17:46 pts/4    00:00:00 ps -F

Desigur, putem să combinăm aceste opțiuni cu opțiunea -e de afișare a tuturor proceselor:

student@uso:~$ ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 Aug18 ?        00:00:19 /lib/systemd/systemd --system --deserialize 39
root         2     0  0 Aug18 ?        00:00:00 [kthreadd]
root         4     2  0 Aug18 ?        00:00:00 [kworker/0:0H]
root         6     2  0 Aug18 ?        00:00:00 [mm_percpu_wq]
root         7     2  0 Aug18 ?        00:00:09 [ksoftirqd/0]
root         8     2  0 Aug18 ?        00:00:06 [rcu_sched]
root         9     2  0 Aug18 ?        00:00:00 [rcu_bh]
root        10     2  0 Aug18 ?        00:00:00 [migration/0]
root        11     2  0 Aug18 ?        00:00:00 [watchdog/0]
[...]

Opțiunile -f și -F afișează și alte atribute ale procesului, precum:

  • UID: numele utilizatorului care deține procesul
  • PPID: identificatorul procesului părinte
  • C: procentul de procesor ocupat
  • STIME: timpul de pornire (start time)
  • RSS: memoria RAM ocupată (resident set size)

Astfel de atribute sunt utile pentru a vedea care sunt procesele cele mai consumatoare de resurse (de exemplu procesor sau memorie).

Monitorizarea proceselor

Monitorizarea folosind htop

Utilitarul htop este un utilitar de monitorizare a proceselor în lumea Linux. Este echivalent Task Manager din Windows. Monitorizarea proceselor este o activitate foarte importantă în administrarea unui sistem de calcul. Un proces care, intenționat sau nu, consumă abuziv resursele sistemului va duce la o proastă funcționare sau chiar la blocarea sistemului. De aceea, utilitarele de monitorizare a sistemului (și a proceselor) sunt diverse. Amintim:

  • iotop: utilitar pentru monitorizarea consumului de I/O al proceselor
  • sysstat: o suită de utilitare pentru monitorizarea sistemului (procese, memorie, I/O, rețea)

Utilitarul htop rulează în linia de comandă prin introducerea comenzii htop și pornește, în terminal, o fereastră interactivă, ca în imaginea de mai jos:

Utilitarul htop

htop este, de asemenea, un utilitar interactiv, un sumar al comenzilor ce pot fi folosite fiind prezentat în bara de jos a ferestrei sale. De exemplu, așa cum vedem și în imaginea de mai sus, cu ajutorul tastei F6 putem alege un atribut după care să sortăm procesele.

Oprirea proceselor. Semnale

Odată pornit, un proces rulează și consumă resursele sistemului. După ce execută codul din executabilul corespunzător, procesul își încheie execuția și eliberează resursele consumate. Dar anumite programe (de exemplu serverele) nu au un punct de oprire, ci rulează într-o buclă, teoretic la infinit. La fel, anumite programe (de exemplu un browser web) sunt interactive și își încheie execuția doar la acțiunea explicită a utilizatorului.

Deosebim astfel între următoarele tipuri de oprire a unui proces:

  1. Procesul ajunge la sfârșitul codului programului și își încheie execuția.
  2. Un comportament neașteptat sau o eroare în funcționarea programului cauzează încheierea execuției acestuia (crash).
  3. Utilizatorul execută o acțiune interactivă care trimite comanda de încheiere a execuției procesului: de exemplu folosirea tastei q pentru a încheia un proces top sau folosirea butonului x dintr-o aplicație grafică pentru a încheia execuția acesteia.
  4. Utilizatorul sau sistemul de operare decide că un proces nu rulează corespunzător și decide terminarea acestuia.

Ultimul punct din pasul de mai sus, numit și terminarea unui proces (sau, informal, omorârea unui proces) este realizat, în Linux, prin folosirea semnalelor.

Folosirea semnalelor pentru omorârea proceselor

Ca să terminăm forțat (omorâm) un proces folosim semnale. Un semnal este o notificare trimisă de utilizator sau de sistemul de operare către un proces. Nu este obligatoriu ca un semnal să omoare procesul care îl primește, dar este cel mai des întâlnit comportament, și principala utilizare a semnalelor.

Ca să trimitem un semnal unui proces trebuie să știm PID-ul acestuia și folosim utilitarul kill urmat de PID-ul procesului. Se folosesc mai multe terminale in paralel. Adică, dacă pornim într-un terminal un proces sleep folosind comanda de mai jos:

student@uso:~$ sleep 60

în alt terminal vom afla PID-ul său (folosind pidof):

student@uso:~$ pidof sleep
9486

și apoi îl vom omorî (folosind kill):

student@uso:~$ kill 9486

Comanda kill primește ca argument PID-ul procesului de omorât, adică 9486.

Verificăm din nou dacă există un proces sleep folosind pidof:

student@uso:~$ pidof sleep
student@uso:~$

Vedem din output că nu mai există procesul sleep, deci a fost omorât.

În terminalul inițial, în care am rulat comanda sleep, apare un mesaj care indică omorârea procesului:

student@uso:~$ sleep 60
Terminated

Folosirea semnalului SIGKILL

În anumite situații, folosirea utilitarului kill nu duce la omorârea procesului țintă. În această situație, vom transmite procesului țintă semnalul SIGKILL care este garantat că va omorî procesul. Adică, amuzant spus, SIGKILL este o bombă nucleară, un glonț care trece prin vesta anti-glonț, cianură de potasiu. Astfel, dacă pornim pe un terminal un proces sleep la fel ca mai sus, în alt terminal vom omorî procesul folosind semnalul SIGKILL ca mai jos:

student@uso:~$ pidof sleep
9834
student@uso:~$ kill -KILL 9834
student@uso:~$ pidof sleep
student@uso:~$

Secvența de comenzi este similară secvenței anterioare cu excepția folosirii opțiunii -KILL la comanda kill care înseamnă trimiterea semnalului SIGKILL.

Efectul este similar dar, pe terminalul în care am rulat comanda sleep, apare un mesaj de forma:

student@uso:~$ sleep 60
Killed

Mesajul Killed este afișat atunci când un proces primește semnalul SIGKILL.

Exerciții: Oprirea proceselor

  • Porniți în trei terminale diferite trei procese sleep. Omorâți-le pe toate cu o singură comandă. PID-ul shellului curent poate fi aflat folosind comanda:
student@uso:~$ echo $$
9477
  • Omorâți shellul curent.
  • Porniți o aplicație vim. Porniți o aplicație htop. Porniți o aplicație firefox. Omorâți aceste procese folosind utilitarul kill intr-o singura comanda.

Observati cum firefox a pornit multiple procese pentru o singura pagina. (Firefox folosește o caracteristică numită multiprocesare; În loc să ruleze totul într-un singur proces, diferite componente ale browserului sunt impartite in procese separate).

Exercițiu: Proces abuziv

Creați un fișier cpu_hog cu următorul conținut:

#!/bin/bash
 
(
nohup dd if=/dev/zero of=/dev/null bs=8M > /dev/null 2>&1 &
)

Folosiți scriptul cpu_hog pentru a porni un proces care consumă mult procesor. Îl porniți folosind o comandă de forma:

$ chmod +x cpu_hog
$ ./cpu_hog

Scriptul cpu_hog pornește un proces care execută o buclă infinită.

Observați, cu ajutorul comenzii htop, că procesorul este încărcat. Identificați procesul cel mai consumator de resurse și omorâți-l (uitati-va dupa comanda care a declansat procesul). Observați, tot cu ajutorul comenzii htop, că acum procesorul nu mai este încărcat.

Dăm chmod +x cpu_hog pentru a putea executa scriptul cpu_hog. NU trebuie să o dăm de fiecare dată când rulăm scriptul, o dată este suficient.

1) Momentul creării unui proces dintr-un fișier executabil, prin încărcarea codului și datelor fișierului executabil în memorie, se numește load-time. Rularea procesului și folosirea resurselor sistemului se numește run-time.
3) Procesul init va exista în permanență în vârful ierarhiei de procese, indiferent de faptul că se va numi systemd, init, upstart sau altfel.
4) Este impropriu să spunem “procesul bash”; corect este “un proces creat din programul / executabilul bash” sau “procesul cu PID-ul XY”. Cu toate acestea vom folosi în general expresia “procesul bash” pentru că reiese din context despre ce proces este vorba.
uso/laboratoare/laborator-04/run.txt · Last modified: 2022/10/25 18:13 by andrei.dragomir1401
CC Attribution-Share Alike 3.0 Unported
www.chimeric.de Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0