
UNDECIDABLE PROBLEMS
Mihai-Valentin DUMITRU

mihai.dumitru2201@upb.ro

October 2022

We have seen many examples of what Turing Machines can do and strongly suggested that there are things that
they cannot do. A consequence of the Church-Turing thesis is that the set R represents exactly those decision
problems that can be solved by an algorithm; so any decision problem outside of R would not be algorithmically
solvable.

Indeed, we claimed that the problem “Pairs” introduced at the very first lecture was an example of such a problem,
not belonging to R; but until now we have not rigorously proven this claim, nor have we proven that there are any
decision problems that are undecidable.

In this lecture, we will formally show that there are infinitely many undecidable problems and identify a particular
one, the Halting Problem.

In order to achieve the first result, we will take a short detour through set theory to introduce (recap?) the notion
of cardinality, which is one way of extending the concepts of “smaller” or “larger” when comparing infinite sets.

1 Cardinality
We say that two sets A and B “have the same cardinality” if there exists some bijection between them. We denote
this by the notation |A| = |B|.

For finite sets, this conforms very well with our intuition of “size of set” which associates a natural number to each
set. For example, the two sets: A = {”alpha”, ”beta”, ”gamma”}, B = {2, 4, 9} have the same cardinality as can be
seen from the following bijection†:

f1 : A→ B

f1(”alpha”) = 1

f1(”beta”) = 2

f1(”gamma”) = 3

But if we were to compare A with some other set like C = {a, b, c, d}, we can find no bijection between them, so
they have different cardinalities; |A| 6= |C|.

Because there exists an injection from set A to set C, we can say that set A is “smaller” than C; |A| ≤ |C|. One
possible injection is:

f2 : A→ B

f2(”alpha”) = a

f2(”beta”) = b

f2(”gamma”) = c

If |A| ≤ |C| and |A| 6= |C|, we say |A| < |C|.

When we move on into the realm of infinite sets, cardinality becomes less intuitive (but, nevertheless, very useful).
For example, we can show that, cardinality-wise, the set of all integers Z has the same cardinality as the set of all
natural numbers N. Consider the bijection:‡

f3 : Z→ N

f3(0) = 0
†There are other bijections as well, but we only care that there’s at least one.
‡This can also be expressed succinctly as f3(x) = 2 ∗ |x| − sign(x), where |x| is the absolute value of the integer and sign(x) is 0

for positive integers and 1 for negative integers.

1

f3(−1) = 1

f3(1) = 2

f3(−2) = 3

f3(2) = 4

f3(−3) = 5

f3(3) = 6

...

This will probably seem weird, as the natural numbers are a proper subset of the integers (N (Z); but they both
have the same cardinality.

What’s more, we can show that the rational numbers Q also have the same cardinality as the natural numbers N,
but this is outside the scope of this lecture.

An interesting result for us is that the naturals have the same cardinality as the set of all strings over some alphabet
Σ = {σ1, σ2, ..., σn}.

nts : N→ Σ∗

nts(0) = ε

nts(1) = σ1

nts(2) = σ2

...

nts(n) = σn

nts(n+ 1) = σ1σ1

nts(n+ 2) = σ1σ2

...

Coming back to familiar sets of numbers, there exists no bijection from the naturals N to the reals R. The cardinality
of R is larger than that of N.

In the next section, we shall show that the cardinality of the real interval [0, 1) is larger than that of N; that the
same holds for N and R should then be obvious.

1.1 Diagonalization
Recall the bijection we used to show that the naturals and the integers have the same cardinality. Basically, in
order to show that some set S has the same cardinality as the natural numbers, it is sufficient to show that we can
systematically place all elements of that set in a list – because the items in a list can all be denoted as: 0, 1, 2, ... By
the term “systematically”, we mean in such a way as to be clear what element of S would be at any position n.

We shall prove, by reductio ad absurdum, that we cannot define such a list of all the real numbers in the interval
[0, 1).

Theorem 1.1. |N| < |[0, 1)|

Proof. Our proof will consist of two parts; first we will show that there can be no bijection between these two sets,
so their cardinalities differ.

Assume that we can make a list of the numbers in [0, 1):

0 0.d00d01d02d03d04...

1 0.d10d11d12d13d14...

2 0.d20d21d22d23d24...

3 0.d30d31d32d33d34...

...

2

Where each dij is a single digit: the jth decimal figure of the ith number in the list. We consider each number
to have infinite decimal digits; for those with a finite representation, such as 0.253, simply consider a neverending
trail of 0s, i.e. 0.2530000...

Now consider the following real number:

X = 0.x0x1x2x3x4...

Where xi is a single digit, as follows:

• if dii is 0, then xi is 1

• if dii is not 0, then xi is 0

This number is not in our initial list!

• x0 is different than d00, so X differs at least in the first decimal place from the first number in the list.

• x1 is different than d11, so X differs at least in the second decimal place from the second number in the list.

• etc.

Generally, xi is different than dii so X differs at least in the ith decimal from the ith number in the list.

Thus X differs from any number in the list, so it’s not on the list.

But our initial assumption was that our list contains all numbers in [0, 1) and we forced no constraints on it. So
our list cannot exist – there is no bijection between N and [0, 1); |N| 6= |[0, 1)|.

Consider the following function:

i : N→ [0, 1)

i(n) = 0.digits(n)

Where digits(n) represents the sequence of base10 digits used to represent n. For example, i(12) = 0.12,
i(734837) = 0.734837. As i is an injection, |N| ≤ |[0, 1)|.

2 There exist undecidable problems
Now that we are somewhat familiar with the concept of cardinality, we will apply it in our context of problems and
machines, to show that there are functions for which no Turing Machine that decides them exists.

2.1 Cardinality of Turing Machines
Let M be the set of all Turing Machines.

Theorem 2.1. |M| ≤ |N|

(A stronger statement is true: |M| = |N|, but we have no need for it, so we won’t prove it.)

Proof. In the previous lecture we showed how we can encode each Turing Machine as a string over the binary
alphabet {0, 1}, i.e. we provided an injection from M to {0, 1}∗; |M| ≤ |{0, 1}∗|.

In the previous section, we showed how the set of all binary strings has the same cardinality as the set of natural
numbers; |{0, 1}∗| = |N|.

2.2 Cardinality of decision problems
Let D be the set of all decision problems.

Theorem 2.2. |N| < |D|

3

Proof. To represent a decision problem f , we will use an infinite sequence of 0s and 1s; the ith element of the
sequence is 1 if f(nts(i)) = TRUE, or 0 if f(nts(i)) = FALSE, where nts is our bijection from strings to naturals,
presented in section 1.

Assume we can make a list of all decision problems.

0 a00a01a02a03a04...

1 a10a11a12a13a14...

2 a20a21a22a23a24...

3 a30a31a32a33a34...

...

For example, decision problem f0, on input nts(2) has an answer corresponding to a02.

Consider the following decision problem fd : Σ∗ → {FALSE, TRUE}:

fd(w) =
{
TRUE fnts−1(w)(w) = FALSE
FALSE fnts−1(w)(w) = TRUE

For w = nts(0), the value of fd(w) is TRUE if f0(w) = FALSE and vice-versa; so fd is not f0, because they differ
at least for w = nts(0).

For w = nts(1), the value of fd(w) is TRUE if f1(w) = FALSE and vice-versa; so fd is not f1, because they differ
at least for w = nts(1).

In general, for any i ∈ N, w = nts(i), the value of fd(w) is TRUE if fi(w) = FALSE and vice-versa; so fi is not
fi, because they differ at least for w = nts(1).

fd does not appear in the list, so our assumption that a list that can contain all decision problems exists leads to
a contradiction; such list can’t exist. |N| 6= |D|.

We will now show an injection from N to D. For each natural number n, we can obtain a unique binary encoding
consisting of the symbols 0 and 1, preceded by an infinite string of leading 0s. Number the last digits “0, the
second to last “1”, the third to last “2” and so on. Let fn(nts(i)) = TRUE if the ith digit of n is 1, FALSE
otherwise; ∀i ∈ N.

For example, given the number 6, its binary encoding will be: “...0000110”. f6(nts(0)) = FALSE, f6(nts(1)) =
TRUE, f6(nts(2)) = TRUE and, for all other values f6 is FALSE.

The function g that takes a number n and maps it to fn is an injection from N to D; |N| ≤ |D|.

2.3 There are “fewer” machines than problems
We showed that |M| ≤ |N|, then |N| < |D|; this gives us|M| < |D|.

Thus, there is no injection from D to M – there are some decision problems to which we cannot associate a Turing
Machine. So there are infinitely many decision problems, for which there is no Turing Machine that can decide
them.

In fact, we have proven a stronger statement. Remember the weaker concept of “solving a decision problem”:
acceptance. This was also defined in terms of existence of some Turing Machines. The fact that the cardinality of
decision problems is strictly greater than that of all Turing Machines means that there are infinitely many decision
problems for which there is no Turing Machine that can accept them.

Given an undecidable problem f , we have no hope of devising an algorithm that can solve it; i.e. always produce
the correct answer in a finite amount of steps.

But if we know that f is undecidable, but acceptable, then, by definition, there exists a Turing Machine M , such
that, for all words w for which f(w) = TRUE, M [w] → TRUE. When f(w) = FALSE, the machine will either
provide the correct answer or loop forever. So a clever idea is to check if the machine loops forever; if yes, then
we can conclude that the answer to f(w) is FALSE.

Unfortunately, such a check cannot itself be performed algorithmically, as we shall show in the next section.

4

3 The Halting problem

Definition 3.1. The “halting problem” is the decision problem:

HALT(enc((M,w))) =
{
TRUE M [w] halts
FALSE otherwise

Here is part of the reason why this problem is important to us:

If HALT were decidable, we could build a machine MHALT that decides it. We could then take any machine M
and input w, serve them as input to MHALT and find out if M [w] halts. Only if we know it halts, we run M [w] and
get the result.

If M is a machine that accepts a problem f , then the fact that M [w] doesn’t halt assures us that f(w) = FALSE;
in effect, we can now decide f , i.e. always obtain the correct answer in a finite amount of time.

3.1 HALT is undecidable

Theorem 3.1. HALT /∈ R

Proof. Assume that there exists a machine MH , s.t. MH decides HALT.

We construct a machine D, which takes as input the encoding of some Turing Machine M ; the behavior of D is as
follows:

1. on input enc(M), simulate MH [enc((M, enc(M))]

2. if MH [enc((M, enc(M)))]→ FALSE, then transition to state Y

3. else (if MH [enc((M, enc(M)))] → TRUE) transition to a new state loop, s.t. ∀g ∈ ΓMH
, δMH

(loop, g) =
(loop, g,→)

Thus, for any machine M , D[enc(M)] either halts in state Y or it doesn’t ever halt. What about D[enc(D)]?

Assume that it halts; then MH [enc((D, enc(D)))]→ TRUE, so (see the 3rd step), D will transition to state loop
and never halt. This is a contradiction!

Assume D[enc(D)] doesn’t halt; then MH [enc((D, enc(D)))] → FALSE, so (see the 2nd step), D will transition
to state Y , halting. This is a contradiction!

There is no consistent behavior for D[enc(D)]. Let’s look at the “components” of D and check that it was properly
constructed:

• it simulates the operation of another machine on some input

• it branches based on the output of the simulation

• it can transition to final state Y

• it can transition to a state that goes to the right forever, leaving the tape unchanged, never halting

From previous lectures and labs, it should be evident that a machine can be designed to perform all these four
actions, so D is properly defined.

The first bullet is the most complex operation; but recall the construction from the lab of a machine Mf◦g that
computes the functional composition of two computable functions f and g, based on the machines that compute
them: Mf and Mg. It’s possible to have a machine contain the behavior of another machine “baked into it”.

Then the contradiction must stem from the initial assumption about the existence ofMH , the machine that decides
HALT. So MH cannot exist; HALT /∈ R.

5

3.2 HALT is acceptable

Theorem 3.2. HALT ∈ RE

This should be an intuitive result. Remember what it means for a problem f to be acceptable: there has to exist a
machine Mf that halts in state Y for any input for which f(w) = TRUE; for others it can either halt in state N or
loop forever.

We will prove this theorem by constructing a machine that accepts HALT.

Let MH be a Turing Machine with the following behavior:

• on input v, check if v is a valid encoding of a tuple (M,w) where M is a Turing Machine and w is a word. If
it isn’t, transition to N .

• simulate M [w]; transition to Y .

Theorem 3.3. MH accepts HALT.

Proof. Remember, from the “Computing” lecture, what it means for a machine to accept a function. For all tuples
(M,w) consisting of a machine and a word:

HALT(enc((M,w)) = TRUE ⇔MH [enc((M,w))]→ TRUE

This statement is made of two implications; we will have to prove both separately.

“⇒”:

HALT((enc((M,w))) = TRUE ⇒ M [w] halts⇒ in the second step, MH transitions to Y ⇒ MH [enc((M,w))]→
TRUE

“⇐”:

MH [enc((M,w))]→ TRUE ⇒M [w] halts ⇒ HALT(enc((M,w))) = TRUE

4 References and further reading
The concept of cardinality and the diagonal argument used in 1.1 were first presented by Georg Cantor (1845-
1918) in his 1891 article: “Uber eine elementare Frage der Mannigfaltigkeitslehre.” [1].

The idea that there are functions for which no machine exists to compute them is central to Turing’s 1936 paper [2].
However, Turing’s formalism and conventions were very different than in this lecture.

The modern formulation of “the halting problem”, originates from Martin Davis’s textbook “Computability and
unsolvability” [3].

The proof of the undecidability of HALT presented in this lecture is adapted from section “An undecidable language”,
in chapter 4.2 of Michael Sipser’s “Introduction to the Theory of Computation” [4].

Bibliography
[1] Georg Cantor. “Uber eine elementare Frage der Mannigfaltigkeitslehre”. In: Jahresbericht der Deutschen

Mathematiker-Vereinigung 1 (1891), pp. 75–78.
[2] Alan Mathison Turing et al. “On computable numbers, with an application to the Entscheidungsproblem”.

In: J. of Math 58.345-363 (1936), p. 5.
[3] Martin Davis. Computability and unsolvability. McGraw-Hill Book Company, 1958, p. 70.
[4] Michael Sipser. Introduction to the Theory of Computation, Third Edition. CENGAGE Learning, 2012. Chap. 4

Undecidability, pp. 207–209.

6

	Cardinality
	Diagonalization

	There exist undecidable problems
	Cardinality of Turing Machines
	Cardinality of decision problems
	There are ``fewer'' machines than problems

	The Halting problem
	HALT is undecidable
	HALT is acceptable

	References and further reading

