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Structural induction is an extension of mathematical induction. We use mathematical induction to prove a property
P of natural numbers (or of an infinite subset of the natural numbers, except the first few ones).

An induction proof consists of proving the base case, followed by the inductive step. These are two statements that
require two different proofs.

The base case requires us to prove that the property holds for a particular number; usually small, very often 0. I.e.
we need to prove P (k) for some small k ∈ N (usually k = 0).

After having proven the base case, we need to prove the statement P (n) → P (n + 1); i.e. “assuming an arbitrary
natural number n has property P , it follows that n + 1 also has this property”.

These two proofs together shows that P holds for all natural numbers ≥ k. Think back in the previous lecture,
where we proposed the definition of a Natural ADT for modelling natural numbers. We employed two construc-
tors: Zero and Succ, meaning that all natural numbers are either zero, or the successor of some other natural
number.

It’s important that all natural numbers can be constructed in this way. This is the key to mathematical induction: if
the sentences P (0) and P (n) → P (n + 1) are correct (here, +1 should not be interpreted as “addition”, but rather
as the result of the successor function), then all numbers must have property P .

The key to extending induction to any ADT T is the following:

• take a base case for each nullary constructor, C : T ; prove the sentence P (C).

• take a base case for each external constructor, E : A1×A2×...×An → T ; prove the sentence P (E(a1, a2, ..., an)),
where a1 ∈ A1, a2 ∈ A2, ..., an ∈ An are arbitrary values of those types.

• for each internal constructor I : T × T × ... × T × A1 × A2 × ... × Am → T †, assume the sentences
P (t1), P (t2), ..., P (tn) (with t1, t2, ..., tn ∈ T ) and prove that under this assumption, P (I(t1, t2, ..., tn, a1, a2, ..., am)),
where a1 ∈ A1, a2 ∈ A2, ..., am ∈ Am are arbitrary values of those types.

In other words, we are proving the sentence P (t1), P (t2), ..., P (tn) → P (I(t1, t2, ..., tn, a1, a2, ..., am)).

Let’s dive right in to some examples.

1 Natural numbers
In the previous lecture, we defined addition on natural numbers, using only two axioms. The first one tells us that
any number added to zero equals to that other number; intuitively, we know that the symmetric sentence is also
true: “zero added to any number equals that other number”. But this is not one of the axioms. It doesn’t have to
be!

Theorem 20.1. P1(n) def= add(n, Zero) = n
∀n ∈ Natural, P1(n)

Proof. Base case (n = Zero): add(Zero, Zero) ADD1= Zero

Inductive step We assume add(n, Zero) = n.
†Each internal constructor’s domain must consist of a cartesian product with n ≥ 1 occurrences of the defined ADT T , as well

as m ≥ 0 occurrences of some other ADT; to simplify the definition here, we moved all the occurrences of T at the beginning of the
product, even though we usually allow them to be mixed among the occurrences of other ADTs.

1



Analiza Algoritmilor Structural Induction

We need to show add(Succ(n), Zero) = Succ(n).

add(Succ(n), Zero) ADD2= Succ(add(n, Zero)) IH= Succ(n).

The text above the equal sign shows the axiom which tells us that we can derive the right-hand-side from the
left-hand-side. IH refers to the “induction hypothesis”.

We can also prove the following:

Theorem 20.2. P2(n) def= ∀m ∈ Natural add(n, Succ(m)) = S(add(n, m))
∀n ∈ Natural, P2(n)

Proof. Base case (n = Zero): add(Zero, Succ(m)) ADD1= Succ(m) ADD1= Succ(add(Zero, m))

Note that the last equality is an abuse of our usual notation, because we actually derive the left-hand-side from
the right-hand-side in a single step according to axiom ADD1 (and not the other way around).

Inductive step We assume add(n, Succ(m)) = Succ(add(n, m)).

We need to show add(Succ(n), S(m)) = Succ(add(Succ(n), m).

add(Succ(n), Succ(m)) ADD2= Succ(add(n, Succ(m))) IH= Succ(Succ(add(n, m))) ADD2= Succ(add(Succ(n), m))

The commutativity of the addition operation is also familiar to us, yet not a part of the axioms that we defined.
Again, this is actually a provable property.

Theorem 20.3. ∀m, n ∈ Natural add(m, n) = add(n, m)

Note that our structural induction method can only be applied to unary properties, which say something about a
particular value of the ADT.

What we need is to prove PCOMM (n) : ∀m ∈ Natural add(m, n) = add(n, m). We can prove this by structural
induction on n, first showing PCOMM (Zero), then PCOMM (n) → PCOMM (Succ(n)).

The base case PCOMM (Zero) is easy: we have to show that add(m, Zero) = add(Zero, m); using axiom ADD1 and
the previously proven P1, we can show both sides are equal to m.

For the inductive step, we assume PCOMM (n) and show PCOMM (Succ(n)).

PCOMM (Succ(n)) : add(m, Succ(n)) = add(Succ(n), m).

Using P2(m), we can reduce the left-hand-side to Succ(add(m, n)); we can reduce the right-hand-side to the same
value, using the axiom ADD1.

Note that we “cheated” a bit, by anticipating important properties that are useful in our proof for commutativity.
In practice, we might not know in advance, which properties are useful; drafting our proof, we get stuck on a
particular property, which we should attempt to prove separately; we can then come back to our original proof,
armed with a new theorem. The important thing is that, at the end, we should type out our proof nicely, reordering
any intermediate results that we need.

2 Lists
Let’s try to prove properties on lists. We will start with a simple one, similar to the first property we proved for the
addition of Natural numbers.

Theorem 20.4. Pl1(l) : append(l, Empty) = l

Proof. Base case (l = Empty): append(Empty, Empty) AP P 1= Empty

Inductive step We assume append(l, Empty) = l.

We need to show append(Cons(x, l), Empty) = Cons(x, l).

append(Cons(x, l), Empty) AP P 2= Cons(x, append(l, Empty)) IH= Cons(x, l)
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3 Binary Trees
Binary trees are a bit more interesting, because they require two hypotheses in the inductive step. Let’s prove a
very simple property about the relationship between the height and the size of a binary tree.

Theorem 20.5. PSH(t) def= height(t) ≤ size(t)
∀t ∈ BTree, PSH(t)

Proof. Base case (t = Nil): height(Nil) H1= 0 SZ1= size(Nil)

Inductive step We assume height(l) ≤ size(l) and height(r) ≤ size(r).

We need to show height(Node(e, l, r)) ≤ size(Node(e, l, r)).

height(Node(e, l, r)) H2= 1 + max(height(l), height(r))

Based on the two inductive hypothesis and the mathematical property (which we assume to be known):

(a ≤ b ∧ c ≤ d) → a + c ≤ b + d

we can conclude that the right-hand-side of our last relation is less than 1 + max(size(l), size(r)); but, using
axiom SZ2, we can see this is exactly size(Node(e, l, r)).

Note the related, stronger property: height(t) < size(t). The difference is that the sign is strict; this property is
not true for Nil (for which both the height and size are 0), or for any leaf (for which both the height and size are
1), but it is true for any other tree.

So we could prove this property holds for almost all trees; in our structural induction proof, we just have to use
trees with at least two levels as the base case.
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