
8. RICE’S THEOREM
Mihai-Valentin DUMITRU

mihai.dumitru2201@upb.ro

October 2024

As you may have noticed from the lab(s) and lecture on reductions, many problems that take as input the descrip-
tion of a Turing Machine are undecidable.

In this lecture, we will formalize this intuition, rigorously defining a category of decision problems and proving
their undecidability. This result is known as “Rice’s theorem”.

1 Intuition
Let’s consider an example of a decision problem whose undecidability you’ve proven at the lab:

P(enc(M)) =
{

TRUE ∀w ∈ Σ∗, M [w] decides if w is a palindrome
FALSE otherwise

Note that it’s crucial to distinguish between this problem and the following one:

PALINDROME(w) =
{

TRUE w is a palindrome
FALSE otherwise

PALINDROME tells us if a particular string is a palindrome. It is a decidable problem; at the lab on Turing Machines,
you had to write a machine that decides it.

P tells us if a particular machine decides PALINDROME. It is undecidable; at the first reductions lab, you built a
reduction to it from the halting problem: HALT ≤m P.

The transformation t takes an input that encodes a (machine, word) tuple (M, w) and produces the encoding of a
single machine M ′.

The behavior of M ′ is as follows:

M ′[v] :

1. memorize v
2. erase v
3. write w
4. simulate M [w]
5. erase any output and write v
6. if v is a palindrome
7. transition to Y
8. else
9. transition to N

To “memorize v”, you can imagine that M ′ has some separate tape on which it can copy its input; a tape whose
contents are not affected by the later simulation of M [w].

After simulating M [w], M ′ simply acts like some machine that decides whether v is a palindrome. We know that
such machine exists, because PALINDROME ∈ R.

M ′ will correctly decide whether v is a palindrome, but only if it can go past line 4; i.e. if the simulation of M [w]
halts. So if we can tell if M ′ correctly decides whether its input is a palindrome, we can tell if M [w] halts. Knowing
that HALT is undecidable, leads us to the conclusion that P is also undecidable.

1



Analiza Algoritmilor Rice’s Theorem

But is there anything special about checking if an input is a palindrome? Couldn’t we just as well replace the final
“if” of M ′ with something like “if v ends with a 0”, or “if v has more than eight symbols” and obtain a similar
result? Namely, that deciding whether a given Turing Machine decides whether its input ends with 0, or if it has
more than eight symbols, is impossible?

This is what Rice’s theorem tells us.

2 Informal statement
One way to phrase Rice’s theorem is the following:

“Any non-trivial property of acceptable problems is undecidable.”
This sentence contains some key terms whose meaning is not obvious, so we will unpack them one by one.

2.1 “... property of acceptable problems...”
A “property” is something that an object either has, or doesn’t. We can model a property using a set: the elements
of the set are exactly the objects who have the property. Having the property means being an element of that set,
not having the property means not being an element of that set. A property of “problems” is thus a set of problems.

2.2 “... property [...] is undecidable...”
With each set of decision problems, we can associate a “yes” or “no” question regarding membership to that set.
I.e. given a decision problem f and a set of decision problems P ⊆ D, we have the questions: “f ∈ P?”.

“Yes” or “no” questions remind us of decision problems, which map their inputs to the codomain {FALSE, TRUE}.
The problem is that we specified the domain of decision problems to be the set of all strings over some alphabet:
Σ∗. At the lecture on undecidability, we established that the cardinality of all decision problems is strictly greater
than the cardinality of all strings, so we cannot have an encoding that maps an arbitrary decision problem to some
string. Thus, an arbitrary decision problem cannot be the “input” of some other decision problem.

However, there is an interesting subset of decision problems that can be represented by strings, namely the
recursively-enumerable problems. The string representation of such a problem is simply the encoding of a machine
that accepts it.

We can have a decision problem which takes as input the encoding of a Turing Machine and maps it to TRUE,
if the problem accepted by that machine has a certain property, or to FALSE if the problem accepted by that
machine doesn’t have a certain property.

We abuse a bit the language and say that a “property is undecidable”; but, more clearly, we mean that the decision
problem associated with said property (i.e. “does f have property P ”) is undecidable.

2.3 “... non-trivial property...”
We use “trivial” here in a precise sense: a property is trivial if either:

• all objects have that property

• no objects have that property

In the previous section we established that our “objects” are acceptable problems (represented by the encoding of
a machine) and properties are subsets of RE.

Thus, the “trivial properties” are the following two subsets:

• ∅

• RE

The decision problems associated with them are, respectively:

• f∅(enc(M)) = FALSE, ∀M (because no acceptable problem is a member of ∅)

• fRE(enc(M)) = TRUE, ∀M (because every acceptable problem is a member of RE)

2



Analiza Algoritmilor Rice’s Theorem

These problems are clearly decidable:

• f∅ is decided by the machine which, from the initial state, upon reading any symbol, transitions to N .

• fRE is decided by the machine which, from the initial state, upon reading any symbol, transitions to Y .

Which is why Rice’s theorem mentions that only the non-trivial ones are undecidable.

We can now rigorously capture the informal description given about into a formal statement of Rice’s theorem.

3 Formal statement

Theorem 8.1. Let S be a subset of the acceptable problems, S ⊆ RE.
Let fS be the decision problem:

fS(enc(Ap)) =
{

TRUE p ∈ S (p is the problem accepted by Turing machine Ap)
FALSE otherwise

Then:

fS ∈ R ⇔ (S = ∅ ∨ S = RE)

Remember that for proving an equivalence we have to prove two implications:

1. fS ∈ R ⇒ (S = ∅ ∨ S = RE)

2. (S = ∅ ∨ S = RE) ⇒ fS ∈ R

4 Proof
We’ve already proven the left implication: (S = ∅ ∨ S = RE) ⇒ fS ∈ R. In subsection 2.3, we constructed
machines that decide f∅ and fRE .

We now prove the contrapositive of the right implication:

(S ̸= ∅ ∧ S ̸= RE) ⇒ fS /∈ R

Any problem in RE is either part of S, or it is not. Because the left-hand-side contains the condition that S ̸= RE,
then there must be at least some problem which is not part of S.

We’ll start our proof with the assumption that the trivial problem whose answer is FALSE for any input is not
part of our set: fF ALSE /∈ S. Later on, we’ll see how we can address that case where fF ALSE ∈ S.

Because the left-hand-side also tells us that S ̸= ∅, then there must be some decision problem g ∈ S†. Remember
that S ⊆ RE, so any problem in S is acceptable; this means that there exists a Turing Machine Mg that accepts g.

We show that fS is undecidable, by reducing the halting problem to it. I.e. we prove this statement:

HALT ≤m fS

Our transformation has to turn any (M, w) pair such that M [w] halts into a machine which accepts a problem from
S, and any (M, w) pair such that M [w] doesn’t halt into a machine which accepts a problem in RE \ S.

The transformation will take the encoding of any (M, w) and turn it into the encoding of a machine that acts as
follows:

M ′[v] :

1. memorize v
2. erase v
3. write w

†There might be more, even an infinite number! We are interested only in one of them, chosen arbitrarily.

3



Analiza Algoritmilor Rice’s Theorem

4. simulate M [w]
5. erase any output and write v
6. simulate Mg[v]

If HALT(enc((M, w))) = TRUE, then M [w] halts; this means that M ′[v] finishes the simulation on line 4 and
proceeds to simulate Mg[v] and have the same behavior. Because Mg accepts g ∈ S, M ′ also accepts g, thus
fS(enc(M ′)) = TRUE.

On the other hand, if HALT(enc((M, w))) = FALSE, then M [w] doesn’t halt; this means that M ′[v] never finishes
the simulation on line 4. M ′[v] never reaches the final state Y , so it doesn’t accept any input. However, each
machine accepts a problem; the problem accepted by M ′ is fF ALSE . We started our proof with the assumption that
fF ALSE /∈ S, so fS(enc(M ′)) = FALSE.

The point of the construction is that either M ′ has the same behavior as Mg, accepting g (which is in S), or never
halts for any input, accepting fF ALSE (which is not in S).

Our demonstration hinges on the fact that fF ALSE /∈ S. But what if fF ALSE ∈ S? Well, then we simply consider
RE \ S as our set and start from there (i.e. we pick a problem g ∈ RE \ S). This would give us a proof that
HALT ≤m fRE\S , thus fRE\S /∈ R. But fRE\S is simply the complement of fS . Remember from the previous lecture
that: f /∈ R ⇔ f /∈ R. So fS /∈ R.

Note that our proof relies on the fact that our considered subset S contains at least one problem (g) and doesn’t
contain at least one problem fF ALSE . This is true of any subset that is not ∅ or RE.

5 References and further reading
The theorem presented here was elaborated by Henry Gordon Rice (1920-2003) in his doctoral dissertation and
in a 1953 article titled “Classes of Recursively Enumerable Sets and Their Decision Problems” [1]. Having been
written so early, the paper uses very different notations and conventions than in modern contexts, which makes it
quite difficult to read.

The definition and proof presented in this lecture are adapted from subchapter 9.3.3 of the textbook “‘Introduction
to Automata Theory, Languages, and Computation” [2].

Bibliography
[1] Henry Gordon Rice. “Classes of recursively enumerable sets and their decision problems”. In: Transactions of

the American Mathematical society 74.2 (1953), pp. 358–366.
[2] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 2007. Chap. 9.3.3 Rice’s Theorem and Properties of the RE Languages,
pp. 397–399.

4


	Intuition
	Informal statement
	``... property of acceptable problems...''
	``... property [...] is undecidable...''
	``... non-trivial property...''

	Formal statement
	Proof
	References and further reading

