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We have proven that there exist undecidable problems and then exhibited one particular example: the halting
problem.

But what if we wanted to systematically classify newly encountered problems based on decidability? We are given
a new problem f and we want some method by which we can tell whether it is decidable or undecidable.

At this point, we could prove decidability by designing a machine Mf that decides f .

For undecidability, we could attempt a proof by contradiction in the style of creating machine D from the previous
lecture, which helped us show that a machine that decides HALT cannot exist.

But we will now introduce a handy “tool” that allows us to use known problems in order to establish the (un)decidability
of new problems: reductions.

We will start with an informal description of reductions, but it should be pointed out that you are already familiar
with and have used reductions before in the context of programming!

Consider this programming task:

“Write a program that checks if a string is a palindrome.”
You could start writing a solution “from scratch”, keeping track of two indices (which start from the beginning and
end of the input string, respectively, and work their way towards the middle) and checking if the characters at
those indices match. Or, you might come up with a very short solution:

1 int isPalindrome (const char *s) {
2 return ( strcmp (s, reverse (s)) == 0);
3 }

That is, you’ve reduced the problem of determining whether a string is a palindrome, to the problem of finding
its reverse. In programming, we write these sort of solutions for a variety of reasons: to keep code readable and
maintainable, to modularize it so that we can use bits of it in other places etc.

In the context of Computability Theory, we shall use reductions for the purpose of proving (un)solvability†: if
reverse is solvable, then so is isPalindrome.

(Actually, we also make use of the strcmp function, so we should say that you’ve reduced our problem to the one
of determining the reverse and comparing it with the original.)

1 Intuition for Turing Machines

1.1 Prefix strings
Consider the following decision problem, PREFIX:

“Given two binary strings s and p, does s start with p?”
For s = 0011010010 and p = 001101, the answer is “yes”, while for s = 01010110 and p = 0110, the answer is “no”.

Is the problem decidable?

To prove that it is, we can design a Turing Machine that decides it.

We will call this machine isPrefix and we’ll adopt the following conventions:

†By which we mean any of: “computability”, “acceptability”, “decidability”.
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• the input of the machine will be a string over the alphabet Σ = {0, 1, &}: it will be of the form s&p (e.g.
0011010010&001101)

• the machine will have two tapes

The machine will first go right, “moving” s from the first tape onto the second, by deleting each symbol on the first
tape and writing it on the second.

Once it reaches the delimiter symbol &, it will reset (move left) the head of the second tape to the first symbol of
s, then move the first head onto the first symbol of p.

The machine then moves both heads in tandem to the right:

• if there is a symbol mismatch and the head on the first tape is scanning a 0 or a 1, reject.

• if the head of the first tape reaches a blank symbol, accept.

Note 7.1. In the resources directory associated with this lecture, you will find the full description of this
machine, written in the syntax for the online simulator.

1.2 Substrings
Let’s consider a different, but similar, decision problem SUBSTRING:

“Given two binary strings s and p, does s contain p?”
For s = 0011010010 and p = 1010, the answer is “yes”‡, while for s = 01010110 and p = 0100, the answer is “no”.

Is the problem decidable?

To prove that it is, we can design a Turing Machine that decides it... Or, we could show that a solution to the prefix
problem entails a solution to this one.

Consider the following proposition, which asserts that a string p is a substring of s iff p is the prefix of some suffix
of s:

SUBSTRING(enc((s, p))) = TRUE ⇔ ∃i, 1 ≤ i ≤ n, s.t. , PREFIX(enc((si...sn, p))) = TRUE

Where s1, s2, ..., sn are the symbols that make up s.

PREFIX being decidable, we know that there is a machine that decides it (we even presented such a machine,
isPrefix, in detail in the previous section). Starting from this machine, we can construct another, isSubstring,
that decides SUBSTRING. Below, we give a pseudocode description of the machine:

isSubstring[s&p] :

1. for 1 ≤ i ≤ |s|:
2. compute s′ = si...sn

3. if |s′| < |p| transition to N
4. simulate isPrefix[s′&p]
5. if isPrefix[s′&p]→ TRUE
6. transition to Y

There are many techniques of reducing a problem to another; in this course, we will only address what are known
as “mapping reductions”, in which we take an input for a problem and transform it into the input for another
problem.

The reduction above, from PREFIX to SUBSTRING is not a mapping reduction.

‡The string 1010 can be found starting from the fourth symbol of string 0011010010.
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2 Mapping reductions
In this section, let f : Σ∗ → {FALSE, TRUE} and g : Σ∗ → {FALSE, TRUE} be two decision problems over
some alphabet Σ.

Definition 7.1.
f ≤m g

def= ∃t : Σ∗ → Σ∗, s.t.
{

t is computable
∀w ∈ Σ⋆, f(w) = g(t(w))

Read the left-hand-side as “f is mapping reducible to g”.

You can think of reducibility as a tool to compare the “hardness” of problems; if f ≤m g, than solving f is “at most
as hard as solving g”.

The computability of t is important, because it means that if we have a machine that decides Mg, we can construct
a machine that decides f : on any input w, first compute t(w), then simulate Mg[t(w)].

Theorem 7.1. (g is decidable ) ∧ (f ≤m g)⇒ f is decidable

Proof. Remember what it means for a problem to be decidable: there exists some machine that decides it. So this
theorem tells us that if there is a machine Mg that decides g and f is reducible to g, there is a machine Mf that
decides f .

f being reducible to g means that there is some computable function t such that for any input w, f(w) = g(t(w)).
t being computable, means there is some machine Mt that computes it.

Based on Mg and Mt, we will construct a machine Mf ; the proof is similar to the composition exercise from the
lab on computing. Mf will contain both the states+tape symbols of Mt and Mg, and almost the same transitions,
with the following exception: when Mt would transition to H, Mf will transition to some auxiliary state that
places the read/write head over the first non-blank symbol, then transitions to Mg’s initial state.

Mf ’s initial state is the same as Mt’s initial state.

Expressed as pseudocode:

Mf [w] :

1. simulate Mt[w] to compute t(w)
2. simulate Mg[t(w)]
3. if Mg[t(w)]→ TRUE
4. transition to Y
5. else
6. transition to N

Theorem 7.2. (g is acceptable ) ∧ (f ≤m g)⇒ f is acceptable

Proof. We use the exact same construction as in the proof above. If Mg accepts g, then Mf will accept f . The
only difference is that there might be some outputs of t on which Mg[t(w))] doesn’t halt; Mf [w] won’t halt either,
but it’s ok because g(t(w)) = FALSE ⇒ f(w) = FALSE.

Theorem 7.3. (f is undecidable ) ∧ (f ≤m g)⇒ g is undecidable

This is a direct consequence of Theorem 7.1 and it will be our main tool for proving a new problem is undecidable.

Similarly, we get:

Theorem 7.4. (f is unacceptable ) ∧ (f ≤m g)⇒ g is unacceptable
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3 More undecidable problems
To see how an undecidability proof using reductions looks like, we introduce two new interesting decision prob-
lems: ALL and ANY.

We need a known undecidable problem to reduce to each of the new ones, to show that they, in turn, are undecid-
able.

For now, the only such problem we know is HALT.

3.1 ALL

Definition 7.2.
ALL(enc(M)) =

{
TRUE ∀w ∈ Σ∗, M [w] halts
FALSE otherwise

ALL is similar to HALT. Each of them takes as input a machine M ; but whereas HALT also takes some specific input
w to tell whether M [w] halts, ALL tells if M halts on “all” inputs.

Theorem 7.5. ALL /∈ R

Proof. We will prove that HALT ≤m ALL. This result, combined with that of Theorem 7.3 shows that ALL /∈ R.

Our transformation t takes as input the encoding of a (machine, string) tuple (M, w) and maps it to the encoding
of a single machine M ′. We need to specify the behavior of M ′ in such a way that: HALT(enc((M, w))) = TRUE ⇔
ALL(enc(M ′)) = TRUE.

M ′[v] :

1. erase v
2. write w
3. simulate M [w]

Is M ′ well-defined?

The erasing of the input v should seem straightforward: you’ve implemented machines that erase the contents of
their tape at the lab.

But what does it mean for M ′ to refer to w or to M? The answer is that the contents of w and the encoding of
M are hardcoded into M ′.

You can imagine that M ′ has a series of states: qw1 , qw2 , ..., qwn – one for each symbol wi of w. For each of these
states and the blank symbol, there is a transition that writes the symbol, goes to the state corresponding to the
next symbol and moves the head right: δM ′(qwi

,□) = (qwi+1 , wi,→).

Similarly, all the states, tape symbols and transitions of M are hardcoded into M ′; after writing the last symbol
of w on the tape, M ′ resets its head onto the first symbol, w1, and transitions to the initial state of M .

But is the transformation good?

If HALT(enc((M, w))) = TRUE, then M [w] halts, so on any input v, M ′, which has the same behavior as M [w]
will also halt, thus ALL(enc(M ′)) = TRUE.

Similarly, if ALL(enc(M ′)) = TRUE, then M ′ halts on all inputs, which means M [w] halts, so HALT(enc((M, w))) =
TRUE.

But what about the computability of the transformation? At first, you might wonder what happens if M [w]
doesn’t halt; but that is of no concern to the machine Mt which computes t. Mt simply has to read the encoding
of (M, w) and write out the encoding of M ′, a machine which at some point will simulate M [w]. But it is not Mt

which runs M [w]! Thus Mt can exist, t is computable.
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Note 7.2. ALL and HALT are decision problems, so their domain is the entire set of strings: Σ∗.
However, the encoding scheme we described for Turing Machines makes it so that not every string is a valid

encoding of a machine. So what do we mean when we say HALT(enc((M, w))) and what is the value of HALT(w)
when w is not a valid encoding of a (M, w) tuple?

The answer is that HALT(w) is then FALSE. Whenever we define a decision problem and write, for the
input variable, an encoding of some object, we implicitly mean that for any string that is not a valid encoding
of such an object, the answer is FALSE.

This is then relevant for reductions f ≤m g; whenever f takes as input an encoded object, the transformation
needs to map it to an input for which g is FALSE.

But this is always easy to do; for HALT ≤m ALL, any input that is not a valid encoding of a (M, w) tuple
can be mapped to ε, or any other string that is not a valid encoding of a Turing Machine.

From now on, such subtlety will be kept implicit.

3.2 ANY

Definition 7.3.
ANY(enc(M)) =

{
TRUE ∃w ∈ Σ∗, M [w] halts
FALSE otherwise

Theorem 7.6. ANY /∈ R

Proof. As before, we will reduce HALT to our new problem, i.e. we will prove that HALT ≤m ANY. This result,
combined with that of Theorem 7.1 show that ANY /∈ R.

Our transformation t takes as input the encoding of a (machine, string) tuple (M, w) and maps it to the encoding
of a single machine M ′. We need to specify the behavior of M ′ in such a way that: HALT(enc((M, w))) = TRUE ⇔
ANY(enc(M ′)) = TRUE.

M ′[v] :

1. if v = 1011:
2. erase v
3. write w
4. simulate M [w]
5. else
6. loop

M ′ only simulates M [w] for a particular input, arbitrarily chosen by the transformation. We could’ve actually
used the same description for M ′ as in the ALL reduction above, but we choose to write it this way in order to
emphasize the differences between ALL and ANY.

If HALT(enc((M, w))) = TRUE, then M [w] halts, so on input 1011, M ′ will have the same behavior as M [w], so
it will also halt, thus ANY(enc(M ′)) = TRUE.

Similarly, if ANY(enc(M ′)) = TRUE, then there is an input on which M ′ halts; because the “else” branch always
makes it loop, we can only look at the “then” branch of the “if”: here M ′ will behave as M [w], so it means M [w]
halts and HALT(enc((M, w))) = TRUE.

Theorem 7.7. ANY ∈ RE

The first idea that might come up for a machine that accepts ANY is to start from the first string§ and run the input
machine on it; if it doesn’t halt, move on to the next string and so on. But this idea doesn’t work; if the input
machine doesn’t halt on the first string, then our simulation will never halt, so we cannot move on to the second
string.

§Remember that |Σ∗| = |N|, so there is some ordering of strings.
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What we need to do is to run the input machine concurrently on multiple strings. But on how many strings? We
cannot simply run one step for each string, then move on to running the second step for each string – we would
never finish the strings for which we need to run one step!

We must, at every step, partially run just one more input.

Proof. We prove ANY ∈ RE by constructing a machine that accepts ANY.

AANY[enc(M)] :

1. n := 0
2. strings := ∅
3. forever:
4. strings := strings ∪ {nth string}
5. for each w in strings:
6. simulate M [w] for one more step (or the first step, for the string just added)
7. if M [w] halted, transition to Y
8. n := n + 1

If there is any string w for which M [w] halts, it will be discovered by AANY, so AANY accepts ANY.

Notice that, in the previous section, we did not present the construction of a machine that accepts ALL. The reason
for that is that such machine doesn’t exist!

To prove that ALL is not acceptable, we could reduce a known unacceptable problem to it. But, at the moment, we
don’t know any such problem, so we need to take a slight detour, studying the complement of a decision problem,
to arrive at an example: HALT.

4 Complement of a decision problem
Let f : Σ∗ → {FALSE, TRUE} be a decision problem.

Definition 7.4. The complement of f is a decision problem f , such that

f(w) =
{

TRUE f(w) = FALSE
FALSE f(w) = TRUE

In other words, the complement of a decision problem is the problem that maps each string to the opposite
{FALSE, TRUE} answer.

When it comes to the relationship between a problem and its complement with regards to decidability and accept-
ability, we can obtain two interesting theorems.

Theorem 7.8. f ∈ R⇔ f ∈ R

This tells us that, if a problem is decidable, so is its complement. We can say that the set of decidable problems, R,
is “closed under complementation”.

Proof. We will prove the right implication: f ∈ R⇒ f ∈ R.

Because the complement of a problem’s complement is the original problem (f = f), the proof of the left implication
is nearly-identical.

f ∈ R means that there exists a machine Df that decides f . Starting from it, we construct a machine Df that
decides f .

Df will have all the same elements of Df , except that all transitions to Y will be replaced by transitions to N and
vice-versa.

I.e., any transition δDf
(q, g) = (Y, h, d) will become δD

f
(q, g) = (N, h, d) and any transition δDf

(q, g) = (N, h, d)
will become δD

f
(q, g) = (Y, h, d), for some q ∈ Q; g, h ∈ Γ; d ∈ {←,−,→}.
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In effect, any input accepted by Df is rejected by Df and any input rejected by Df is accepted by Df .

So Df decides f , thus f ∈ R.

Theorem 7.9. (f ∈ RE) ∧ (f ∈ RE)⇔ f ∈ R

If a problem is acceptable and its complement is acceptable, then the problem is decidable. Combined with the
previous theorem, we obtain that its complement is also decidable.

Proof. We will prove the right implication: (f ∈ RE) ∧ (f ∈ RE)⇒ f ∈ R.

The left implication can be obtained from the fact that R ⊆ RE and the previous theorem.

f ∈ RE means that there exists a machine Af that accepts f . Similarly, f ∈ RE means that there exists a machine
Af that accepts f .

Starting from these, we construct a machine Df that decides f .

It’s important to note that, for any string w, either f(w) = TRUE or f(w) = TRUE. Which means that either
Af [w] will halt in the Y state, or Af will halt in the Y state.

So we will run these two machines concurrently and notice which one halts. Note that if Af halts, we need to
reverse its output. We also said that machines that accept a problem don’t necessarily loop, but may also halt in
final state N , whenever the problem’s answer is FALSE, so we need to take this into account.

Df [w] :

1. forever:
2. simulate one step of Af [w]
3. if Af [w] halted in state Y :
4. transition to Y
5. elseif Af [w] halted in state N :
6. transition to N
7. simulate one step of Af [w]
8. if Af [w] halted in state Y :
9. transition to N
10. elseif Af [w] halted in state N :
11. transition to Y

5 Unacceptable problems
Our first example of a problem outside RE is the complement of the halting problem.

Definition 7.5.
HALT(enc((M, w))) =

{
TRUE M [w]→⊥
FALSE otherwise

Note 7.3. We now reiterate what was said in Note 7.2. Taken as it is, for any string that is not a valid
encoding of a (M, w) tuple, both HALT and HALT should be FALSE; but this contradicts our definition of a
problem’s complement.

So we convene that whenever a problem is presented as “the original”, then it will be FALSE on invalid
strings, while the problem presented as “its complement” will be TRUE.

This is merely a convention and does not affect any of our results; we could just as well say that HALT is
TRUE on invalid strings and HALT is FALSE.

Why is HALT not in RE?
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Remember that, in the last lecture, we proved that HALT ∈ RE. Earlier, in this lecture, we proved Theorem 7.9. So,
if HALT ∈ RE, then HALT ∈ R. But in the last lecture, we also proved that HALT /∈ R, which leads to a contradiction.
Thus our assumption must be false and HALT /∈ RE.

However, there is still some “solvability” to HALT: we can write a machine that, whenever HALT(enc((M, w)) =
FALSE, halts in the final state N , giving us the correct answer. Whenever HALT(enc((M, w)) = TRUE, our
machine might halt in Y , or run forever. This is obvious due to the symmetry to HALT: we just take the machine
that accepts HALT and swap Y for N .

We might call HALT a “rejectable problem”; in Computability Theory, such problems are simply known as “problems
whose complement is acceptable”, which leads us to the following set:

Definition 7.6. coRE
def= {f ∈ D | f ∈ RE}

Note that R = RE ∩ coRE.

These three sets capture all decision problems that are, in some sense, “solvable”: either we can always produce
the correct answer (R), or produce the correct answer whenever it’s TRUE (RE), or produce the correct answer
whenever it’s FALSE (coRE).

We shall now see that ALL belongs to neither of these sets.

6 Beyond RE ∪ coRE

Theorem 7.10. ALL /∈ RE

Having discovered an unacceptable problem, HALT, we can now prove this using reductions. We will show that
HALT ≤m ALL.

Proof. We cannot have the same reduction as in the case of HALT ≤m ALL; we cannot check if a machine runs
forever and halt if it does. We have to resort to a clever trick:

M ′[v] :

1. erase v
2. write w
3. simulate M [w] for |v| steps
4. if M [w] halted
5. loop
6. else
7. halt

We’re not checking whether M [w] runs forever, but rather we’re checking if the machine is still running after i
steps, for some natural number i which depends on the input. If M [w] runs forever, then it will not halt in i steps,
for any i.

Note that i doesn’t have to be the length of the input; we chose this for ease of writing; it could be the result from
some other function from strings to naturals. But that function has to be strictly increasing (thus having no
maximum value). Otherwise, it would be possible for M [w] to halt in a number of steps just above that maximum
value.

HALT(enc((M, w)) = TRUE means that M [w] never halts; thus it will not halt after any number of steps, so M ′

will always take the “else” branch and halt for every input; ALL(enc(M ′)) = TRUE.

HALT(enc((M, w)) = FALSE means that M [w] halts and it will do so in some number of steps n; thus for any
input v, such that |v| ≥ n, the simulation of M [w] will have halted, so M will take the “then” branch, looping
forever; so M ′ doesn’t halt on every input and ALL(enc(M ′)) = FALSE.

Together with Theorem 7.4 we obtain: ALL /∈ RE.

We now go one step further:
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Theorem 7.11. ALL /∈ coRE

To prove this, we need to show that ALL /∈ RE.

Proof. We will do this via a reduction from HALT, proving HALT ≤m ALL.

But we have already proven this! Remember the definition of a mapping reduction and that of a problem’s
complement. The transformation required by a mapping reduction maps all inputs for which HALT is TRUE onto
strings for which ALL is TRUE; similarly for FALSE.

This means that the same transformation used to show HALT ≤m ALL, can be employed between their complements.
In general, f ≤m g ⇔ f ≤m g.

We have shown that HALT ≤m ALL in subsection 3.1, thus HALT ≤m ALL and so ALL /∈ RE ( ALL /∈ coRE).

In conclusion, ALL /∈ RE ∪ coRE, so we can’t solve it in any way.
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