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It is now time to zoom-in on the tractable problems and start classifying and comparing them using more precise
complexity characteristics.

Up until now, we were content to split the world of problems into “polynomial” and “non-polynomial”; but it is
time to move on and check which problems can be solved in O(n), O(n log(n)), O(n2) etc. time.

This means that we will have to refer to some particular model of computation (remember that, for example, a
2-tape TM can solve PALINDROME in time Θ(|w|), but a single-tape TM can only do it in Θ(|w|2)).

Remember the problem PALINDROME and its single-tape and two-tape solutions. We discussed that a single-tape
TM can solve it in Ω(|w|2) time, but a two-tape TM can do it in Ω(|w|) time. So the precise choice of model matters
if we intend to make a classification more fine-grained than “polynomial” vs. “non-polynomial”.

Going forward, our model of computation will not be the Turing Machine, but a generic (and vaguely defined)
“RAM machine”. Ideally, we would like here to make a gentle introduction to this concept, dedicating a whole lec-
ture to the intuitive functioning, formal definition, computability and complexity perspective of the RAM machine.
However, due to time constraints, we will skip this presentation; instead we’ll just present these relevant features:

• A RAM machine has integer registers and an arbitrarily large “memory”: an array of locations that can each
hold an integer; accessing any value in this array can be done in constant time.

• A RAM machine cannot compute more functions that a TM; every RAM machine can be simulated by a TM.

• Every RAM machine can be simulated by a TM with only a polynomial slowdown.

Familiarity with the x86 architecture and assembly language should help with understanding of the RAM machine
model. However, do note that x86 registers and memory locations are of fixed sizes and cannot store arbitrarily
large integers. The “instruction set” of the RAM machine is a complicated matter: most of the time, you can treat
as “a single-step action” (so in constant time Θ(1)) any operation for which there exists an x86 instruction. One
immediate objection to this is that (for the RAM machine to be theoretically useful), multiplication cannot be a
primitive, constant-time operation. To circumvent in-depth discussions about why this is so and what exactly are
the operations possible in constant time, we will usually specify some specific operation(s) that we’re counting
as “basic operations”. For example, in the context of “comparison-based sorting algorithms”, we will “count” the
number of comparisons performed by the algorithms. When we say: “insertion sort has a complexity of Θ(n2)”,
we mean that the number of comparisons performed by insertion sort grows asymptotically in a quadratic manner
with the number of elements in the input array.

1 Merge sort
Our first case study is the algorithm known as “merge sort”. Note that sorting is not a decision problem, we have
to compute a function: given a list of integers, what is the sorted form of the list?

The algorithm works recursively. The base case is a list consisting of a single element, or the empty list: these are
already sorted.

Any bigger list is split in two, then merge sort is applied twice, recursively, on each half-list. The sorted lists are
then merged together. Merging is a procedure that takes two sorted lists and produces from them a third one in
sorted order; because the input lists are already sorted, this is quite easy to do.
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Algorithm 16.1 Merge Sort pseudocode
1: function merge_sort(A, length)
2: if (length = 0) ∨ (length = 1) then
3: return A

4: middle← ⌊ length
2 ⌋

5: AL ← merge_sort(A, middle)
6: AR ← merge_sort(A + middle, length− middle)
7: return merge(AL, middle, AR, length− middle)

8: function merge(A, lengthA, B, lengthB)
9: lengthR ← lengthA + lengthB

10: R← new_array(lengthR)
11: i← 0
12: j ← 0
13: k ← 0
14: while i < m ∧ j < n do
15: if A[i] ≤ B[j] then
16: R[k]← A[i]
17: k ← k + 1
18: i← i + 1
19: else
20: R[k]← B[j]
21: k ← k + 1
22: j ← j + 1

23: while i < lengthA do
24: R[k]← A[i]
25: k ← k + 1
26: i← i + 1

27: while j < lengthB do
28: R[k]← B[j]
29: k ← k + 1
30: j ← j + 1

31: return R

Theorem 16.1. MERGE_SORT has a running time of Θ(n log(n))

Where n is the array length (called length for clarity in the pseudocode).

You are probably familiar with this result, but how can we prove it?

The first thing that the merge procedure does is to allocate a new array R; the precise details of this process are
unimportant (in practice, we would have a malloc that we can treat as a black box); the only essential element is
that we can think of it as happening in linear time, or faster.

It is easy to see that the rest of the procedure does Θ(lengthA + lengthB) operations. But the merged arrays
are halves of the original, so we can say that merge runs in linear time Θ(n). The difficulty with merge sort itself
comes from the recursive calls.

Let T (n) be the time complexity of merge sort on an array of n elements. Then the recursive calls lead us to this
recursive relation:

T (n) = T
(⌊n

2

⌋)
+ T

(⌈n

2

⌉)
+ Θ(n)
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When given an array of n elements, merge sort calls itself twice with arrays half as long, then does some extra
work: it merges them in linear time†.

For now, let us make the simplifying assumption that we are only dealing with arrays whose length is a power of
2: at each step, the array is split exactly in half, two parts of equal length. This gives us the relation:

T (n) = T
(n

2

)
+ Θ(n)

In order for this relation to make sense, we need some base case. For an array with no elements, or one elements,
the function just does some checks in constant time:

T (0) = Θ(1) (1)
T (1) = Θ(1) (2)

In this lecture we will learn how to solve these types of recurrences, a technique that allows us to determine the
time complexity of recursive algorithms.

2 The recursion-tree method
Our first approach is very natural and general. We will construct a recursion-tree of the formula. The structure of
the tree is as follows:

• We start from the root; we label this with the time complexity required to split/combine solutions and
anything else. We shall think of this as “the amount of work” (in basic operations‡) that need to be performed
in a single recursive call.

In our case, this “amount of work” is Θ(n)

• Each node has a number of children equal to the number of recursive calls made.

In our case, each node has two children, except for the leaves of the tree, which have no children. In general,
level i of the tree has 2i nodes (the root is on level 0).

• As mentioned before, each node gets labeled with its “local amount of work”.

In our case, for the children of the root this is Θ( n
2 ). In general, a node on level i has a label of Θ( n

2i ).

• The leaves are those nodes that correspond to the base cases.

In our case, the leaves are those nodes which have to sort arrays with one item. They are all on the same
level, let’s call it k. Because we get to these leaves by halving n a total number of k times, we have that
k = log2(n).

In the recursion tree of merge sort, on each level i, we have 2i nodes, each doing n
2i operations; a total number of

n operations per each level.

Starting with the root node on level 0, we have log(n) + 1 levels.

Thus the total “amount of work” of the tree is n · log(n) + 1; this is Θ(n log(n)).

In general, we need to describe the tree structure, including the “amount of work” performed by each node; after
doing so, we just have to sum up the work of all the nodes.

For merge sort, each level performed the same amount of work, which made it easy – we only had to multiply two
terms. For other relations, this might not be the case.

In the next lecture we will learn about the master method, with which we can directly obtain an answer for all
recurrences of the form T (n) = aT ( n

b ) + f(n).
†It also does the extra work of checking the array length for the base case, but this is some extra constant that gets hidden by Θ(n).
‡Here, by “basic operations” we mean: comparing two values, incrementing a value, setting the value of a variable.
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3 Dealing with numbers that are not powers of 2
Let us return to our assumption that n is a power of 2. If it isn’t, how does that change our result?

In the tree described above, it will not be true that each child of a node has the same amount of work to do; but
the amount of work per level will be the same.

The tree also becomes unbalanced and some paths from root to leaf will be longer than others. But this difference
can be at most 1.

As a consequence, the asymptotic growth we found for powers of 2, also holds for other numbers.

Note that this is only true for “natural” recurrences, such as the one described for merge sort, where one of the
children gets the floor of n

2 and the other gets the ceil of n
2 . We can imagine an artificial recurrence that checks

whether n is a power of 2 and changes its behavior based on this answer, but we shall ignore these cases, as they
don’t really appear in practice.

4 The substitution method
A more general method of determining the complexity of a recurrence relation is using the substitution method.

This involves making a guess of the complexity, then proving it rigorously, using induction. The recursion-tree
method is a good way of getting such a guess: we can apply it sloppily, get an idea of the true answer, then prove it
using the substitution method. Generally, this should involve less work than writing a precise, rigorous proof using
the recursion-tree method alone.

Let us return to merge sort and its recurrence relation and show how the substitution method works to prove that
T (n) ∈ O(n log(n)). We only prove an upper-bound here; this allows us to easily give up our assumption that n is
a power of 2; we shall actually consider a modified version of the recurrence T (n) = 2T

(⌈
n
2

⌉)
+ Θ(n). Note that

this is “bigger” than the actual recurrence of merge sort.

The term Θ(n) seems difficult to work with; we can choose instead some particular function from Θ(n), say n, and
rewrite T (n) = 2T

(⌈
n
2

⌉)
+ n.

Remember the formal definition of O! We need to show that there exists two positive constants c and n0, such that
for any n ≥ n0, 0 ≤ T (n) ≤ cn log(n).

Before we begin our proof, there is an important upper bound we need:

Theorem 16.2.
log

(⌈n

2

⌉)
≤ log

(n

2

)
+ 2

n

Proof.

log
(⌈n

2

⌉)
= log

(n

2

)
+ log

(⌈n
2 ⌉
n
2

)
(3)

< log
(n

2

)
+ log

( n
2 + 1

n
2

)
(4)

= log
(n

2

)
+ log

(
1 + 2

n

)
(5)

≤ log
(n

2

)
+ 2

n
(6)

This proof hinges on the fact that log(1 + x) ≤ x for x ≥ 0.

Now we can get back to our inductive proof that T (n) ∈ O(n log(n)).

Base case: T (1) equals some constant k > 0. This is problematic, because we obtain 0 ≤ k ≤ 0 which is false.

But remember that the asymptotic notations only tell us something about the growth of a function, from some point
n0 onwards. So we can choose a different base case for our inductive hypothesis, n = 2; we obtain: 0 ≤ 2k+2 ≤ 2c.

This holds for any c ≥ k + 1.
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For reasons that we will clarify later, we must also choose T (3) as a base case:

T (3) = 2T (2) + 3 = 4k + 7

0 ≤ 4k + 7 ≤ c3 log(3) holds for all c ≥ 4k + 7
3 log 3 .

We have two constraints that c should be bigger than some value, so we must choose the maximum between the
two. Later, we will get another constraint.

Induction step: Assume our relation holds for any number lower than n; this includes
⌈

n
2

⌉
: 0 ≤ T

(⌈
n
2

⌉)
≤

c
⌈

n
2

⌉
log

(⌈
n
2

⌉)
.

Multiplying this relation by 2 and adding n we get:

0 ≤ 2T
(⌈n

2

⌉)
+ n ≤ 2c

⌈n

2

⌉
log

(⌈n

2

⌉)
+ n

But the middle part is precisely T (n), so we have:

0 ≤ T (n) ≤ 2c
⌈n

2

⌉
log

(⌈n

2

⌉)
+ n (7)

= 2
⌈n

2

⌉
c

(
log

(n

2

)
+ 2

n

)
+ n (8)

≤ 2
⌈n

2

⌉
c

(
log(n)− 1 + 2

n

)
+ n (9)

≤ cn

(
log(n)− 1 + 2

n

)
+ c

(
log(n)− 1 + 2

n

)
+ n (10)

= cn log(n)− cn + 2c + c log(n)− c + 2c

n
+ n (11)

= cn log(n) + (1− c)n + c log(n) + c + 2c

n
(12)

c log(n) + c + 2c
n grows slower than n; so if n’s coefficient is negative, everything after cn log(n) is less than zero

for sufficiently large n.

We can set c to whatever value we need, but we need this to work starting from n = 4 (the first non-base case).

In other words, we want the monotonously decreasing function: f(n) = (1− c)n + c log(n) + c + 2c
n to be already

smaller than 0 at f(4):

f(4) = (1− c)4 + c log(4) + c + 2c

4 (13)

= 4− 4c + 2c + c + c

2 (14)

= 4− c

2 (15)

So f(4) ≤ 0⇔ c ≥ 8; so we can just choose c to be max
(

k + 1,
4k + 7
3 log(3)

)
+ 8.

For n = 3, there is no positive value of c for which f(3) < 0; that is why we had to treat 3 separately, as a base
case.

4.1 Simplifying
From now on, we will generally not bother with specifics, such as using floors and ceils. We will think of recurrences
as of the form T (n) = 2T ( n

2 ) + n.

This will keep proofs much simpler:

T (n) ∈ O(n log(n))⇔ (16)
∃c ∈ R+, n0 ∈ N, s.t. ∀n ≥ n0, 0 ≤ T (n) ≤ cn log(n) (17)
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Proof. Base case: n = 2 : 0 ≤ 2k + 2 ≤ 2c, which holds for c ≥ k + 1.

Induction step: Assume that 0 ≤ T ( n
2 ) ≤ c n

2 log( n
2 ).

Multiply by 2 and add n to get:

T (n) ≤ 2c
n

2 log(n

2 ) + n (18)

= cn log(n

2 ) + n (19)

= cn(log(n)− log(2)) + n (20)
= cn log(n)− cn + n (21)
≤ cn log(n) (22)

The final relation holds for all c ≥ 1, so c = max(1, k + 2).

4.2 Complications
Sometimes our proofs may fail in a specific way. Consider the recurrence T (n) = 2T ( n

2 ) + log(n). Sketch the
recursion tree to get the guess that T (n) ∈ O(n).

We then proceed with the substitution method:

Proof. Base case: n = 1 : 0 ≤ k ≤ c, which holds for c ≥ k.

Induction step: Assume that 0 ≤ T ( n
2 ) ≤ c n

2 .

Multiply by 2 and add 1 to get:

T (n) ≤ 2c
n

2 + 1 (23)

= cn + 1 (24)

... and we’re stuck...

We showed that T (n) ≤ cn + 1, but we are supposed to show that T (n) ≤ cn, which doesn’t follow from what we
have. What bothers us is that +1 that we can’t get rid of.

To address this, we will change the form of what we are trying to prove, by showing instead that 0 ≤ T (n) ≤
c(n − r), for some fixed constant r. Proving this amounts to showing that T (n) ∈ O(n − r); but this is the exact
same set as O(n)!

Proof. Base case: n = 1 : 0 ≤ k ≤ c(1− r).

r is a constant that we can choose for our convenience, before starting the whole proof§, so we can avoid the
problematic values that yield something that isn’t strictly positive (so r < 1).

Then the relation holds for: c ≥ k

1− r
.

Induction step: Assume that 0 ≤ T ( n
2 ) ≤ c( n

2 − r).

Multiply by 2 and add 1 to get:
§We gave it a symbolic name so that we can start the proof and see what problems appear along the way.
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T (n) ≤ 2c(n

2 − r) + 1 (25)

= 2c
n

2 − 2cr + 1 (26)

= cn− cr + (1− cr) (27)
= c(n− r) + (1− cr) (28)
≤ c(n− r) (29)

Now we have a way out! The final relation holds if 1− cr ≤ 0, i.e. if c ≥ 1
r .

5 References and further reading
Much of the treatment of recurrences in these notes is inspired by and adapted from section 4 “Divide-and-Conquer”
of the first chapter of the legendary textbook “Introduction to Algorithms” [1] by Cormen, Leiserson, Rivest and
Stein.
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