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We ended the previous lecture by identifying a large class of problems that we deem “tractable”. The class P ,
consisting of all problems that can be solved in polynomial time might seem too generous: a problem which is in
DTIME(n8), but not in DTIME(n7) (or lower) certainly doesn’t seem feasible from a practical point of view.

Perhaps less controversial is the fact that any problem outside of P is intractable†. For example, consider a problem
whose optimal solution needs 2n transitions. For an input size of n = 100, the number of transitions needed to find
the answer is astronomical: 1267650600228229401496703205376.

And 100 is not a large input size; it’s easy to envision a graph with much more than 100 nodes (e.g. the web,
the “friendship” relations in a social network) or a list with much more than 100 items (e.g. client data for an
online retail service) etc. In comparison, even a large polynomial like n8, already has a lower value at 100, namely
10000000000000000.

In fact, no matter how large the power of the polynomial, there is always some input size at which the exponential
gets larger: ∀k ∈ N, nk ∈ o(2n).

Surprisingly, proving that a problem is or isn’t in P is a very difficult task. In this lecture we shall do a tour-de-force
of several well-known, practically important problems, whose precise difficulty is not known! No polynomial-time
solutions are known for these problems; during many decades of study by top researchers in the fields of complexity
and algorithms, no one has managed to find such a solution. Which is why it is widely believed, with varying levels
of justification, that such solutions don’t exist and these problems are not in P .

All this is related to perhaps the most famous open-problem in computer science: the P versus NP problem. In
the next few lectures, we shall find out exactly what the class NP is‡. We will also introduce a more precise
terminology for problems considered to be difficult: they are NP -complete and we shall see that if any of them is
proven to be in P , then it follows that all of them are.

For each of the “hard?” problems presented here, we will follow the same procedure.

First, we will define the problem: on what kinds of inputs it operates, what it wants to determine etc. Most of
the problems here have a simple description that depends on a specialized term that we will define alongside the
problem. All the problems have something else in common: they ask for the existence of some object(s) that
depend on the input. If such objects exist, the answer is TRUE, else it is FALSE.

We will then informally describe a simple algorithm to solve the problem in more-than-polynomial time. All of our
algorithms will follow the same pattern: they generate a list of all possible candidate solutions, then check whether
a particular candidate fits the criteria required by the problem. If any candidate does, the algorithm provides a
positive answer; if all candidates fail, the algorithm provides a negative answer.

You shall see that all the “candidate verifications” run in polynomial time; later on we will formalize this as the
class NP . So the “hard” part consists of generating all the candidates.

1 Graph problems
Before proceeding to see some example problems on graphs, it is worth recapitulating what graphs are and consider
how a Turing Machine could work with them.

We consider graphs to be pairs G = (V, E) of a set of nodes V and a set of edges E. We refer to each node as a
number from 1 to |V |. An edge is a pair of nodes. We will generally be talking about undirected graphs, where an
edge is an unordered pair.

†However, in real life, we often do employ solutions that have exponential worst-case time complexity.
‡Suffice it to say for now that its name stands for “Nondeterministic Polynomial time” and it is, roughly speaking, the class of

problems with “easily-verifiable solutions”.
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We will use adjacency matrices to represent graphs. An adjacency matrix is a |V | by |V | table, where the nodes
index both the lines and the columns; the i, j entry of the matrix is a boolean value which shows whether (i, j) ∈ E.
Note that for undirected graphs, the matrix is symmetric with respect to its main diagonal.

The adjacency matrix itself contains all the information to describe the graph, so it can serve as the input for our
algorithms.

We could represent each row of the matrix as a series of |V | bits; then all |V | rows can be separated by a special
symbol, such as “;”. This representation of a graph G can serve as the input to a Turing Machine.

If a problem requires other inputs, such as one or more node indices, or other integers, we can provide the binary
encoding of them.

2 VERTEX COVER

Definition 12.1. VERTEX COVER: Does graph G = (V, E) have a cover of size K?
A cover is a subset of nodes C ⊆ V , such that each edge has at least an end in C:

∀(u, v) ∈ E, (u ∈ C ∨ v ∈ C)

We can consider each subset of K nodes (U ⊆ V, |U | = K) and check if it is a cover.

How many such subsets are there? We turn to combinatorics:

• we need to fill a list of K elements

• the first element can be any one of the |V | nodes of G

• once we set a first element, we “used up” one node, so we are left with only |V | − 1 options for the second
node

• once we set a first and second element, we “used up” two nodes, so we are left with only |V | − 2 options for
the third node and so on

But note that the order of the nodes doesn’t matter, i.e. we are not interested in arrangements, but combinations.
We can write this succinctly as: |V |!

(|V |−K)!K! .

We are now dealing with factorials, so we would like to know what we can say about the growth of the factorial
function n!.

Theorem 12.1. ∀k ∈ N, nk ∈ o(n!)

So we have a more-than-exponential number of candidate subsets. We can of course generate these (think back-
tracking), but the time required to do so is superpolynomial, so we deem this approach intractable.

There is some ray of light here: once we have a particular candidate solution, we can “easily” check whether it is
indeed a cover; consider the following pseudocode:

Algorithm 12.1 Polynomial checking of a candidate for VERTEX COVER

function check_candidate(U):
result← TRUE
for each (u, v) ∈ E do

if u /∈ U ∧ v /∈ U then
result← FALSE

return result

For each edge, we check whether it has at least one end inside the candidate subset; if not, then U doesn’t cover
at least this edge, so it is not a cover.

Remember that our graphs are represented as adjacency matrices; so iterating through all the edges can be done
in O(|V |2) time. Checking if a node is part of U takes O(|V |) (U ⊆ V ): we check each element of U one by one.
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The running time of check_candidate is polynomial. All problems presented in this lecture share this particular
characteristic: there is a polynomial algorithm that correctly decides whether some candidate solution is actually
a solution. In the next lecture, we will formalize this as a definition for the complexity class NP .

3 CLIQUE

Definition 12.2. CLIQUE: Does graph G = (V, E) have a clique of size K?
A clique is a subset of nodes C ⊆ V , such that all nodes in the C are connected to each other:

∀u, v ∈ C, (u, v) ∈ E

This problem is very similar to VERTEX COVER. Two lectures from now, we shall see that they are reducible one to
the other (the same thing can be said about the rest of the problems presented here).

We have a superpolynomial number ( |V |!
(|V |−K)!K! ) of possible candidate subsets of nodes of size K.

We can check each of these quickly in polynomial time:

Algorithm 12.2 Polynomial checking of a candidate for CLIQUE

function check_candidate(U):
result← TRUE
for each u ∈ U do

for each v ∈ U do
if u ̸= v ∧ (u, v) /∈ E then

result← FALSE
return result

4 COLORING

Definition 12.3. COLORING: Can graph G = (V, E) be colored with K colors?
A coloring of K colors is a function color : V → {c1, c2, ..., ck} such that:

∀u, v ∈ V ; (u, v) ∈ E ⇐⇒ color(u) ̸= color(v)

Informally, we want to color each node of the graph with one of several different colors, such that any adjacent
nodes are colored differently.

We can solve this by considering all possible ways to color the nodes and see if any of them matches the adjacency
condition.

Each of the |V | nodes can take one of K colors, so we have a total k|V | colorings – an exponential number.

Given a coloring, we can verify its correctness in polynomial time:

Algorithm 12.3 Polynomial checking of a candidate for COLORING

function check_candidate(U):
result← TRUE
for each u ∈ U do

for each v ∈ U do
if u ̸= v ∧ (u, v) ∈ E ∧ color(u) = color(v) then

result← FALSE
return result

5 HAMILTONIAN PATH

Definition 12.4. HAMILTONIAN PATH: Does graph G = (V, E) have a Hamiltonian path?
A Hamiltonian path is a path of length |V | with no duplicates.
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Informally, we are searching for a path that goes through each node exactly once.

Knowing that such a path has |V | nodes we can consider as candidates all permutations of the sequence U =
(1, 2, ..., |V |) of all nodes and check if it is a path (there is an edge between any two consecutive nodes).

There are |V |! such permutations.

Given a permutation we can check whether it’s a path in polynomial time:

Algorithm 12.4 Polynomial checking of a candidate for HAMILTONIAN PATH

function check_candidate((u1, u2, ..., u|V |)):
result← TRUE
for each i← 1, (|V | − 1) do

if (ui, ui+1) /∈ E then
result← FALSE

return result

6 TSP

The name stands for “The Travelling Salesman Problem”.

Definition 12.5. TSP: Given a weighted graph G = (V, E) and a budget B, does there exist a Hamiltonian
path of total cost lower than B?

A weighted graph is one in which each edge has a numerical value associated with it. These can be interpreted as
distances, costs etc. We shall call it “cost”.

The total cost of a path is simply the sum of the costs of all the edges in the path.

A weighted graph can be represented as an adjacency matrix in which each entry is not merely a single bit (0 if
there’s no edge, 1 if there’s an edge), but rather an integer – the cost of an edge. Note that 0 still signifies that
there is no edge.

The formulation of this problem seems a bit forced and that is because we wish to focus solely on decision problems.
The more well-known version of this problem (and perhaps a more natural one) does not include a budget and
simply requires finding the path with the lowest cost. We won’t spend much time studying such optimization
problems, but we will show in a future lecture how they relate to their decision version.

Like with HAMILTON PATH, we have |V |! candidates.

Algorithm 12.5 Polynomial checking of a candidate for TSP

function check_candidate((u1, u2, ..., u|V |)):
cost← 0
isPath← TRUE
for each i← 1, (|V | − 1) do

if (ui, ui+1) /∈ E then
isPath← FALSE

else
cost← cost + C(ui, ui+1)

return isPath ∧ cost ≤ B

7 CUT

Definition 12.6. CUT: Given a graph G = (V, E) and a number K, does there exist a cut of size at least K?
A cut of size K is a partitioning of V into a pair of complementary subsets V1, V2, such that the number

of edges (u, v) ∈ E such that u ∈ V1 ∧ v ∈ V2 is K.

A pair of complementary subsets simply means that V1 = V \ V2.

We are asked to split the graph into two “zones”, such that a number of K edges cross the zone boundary.

There are 2|V | candidates for V1.
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Algorithm 12.6 Polynomial checking of a candidate for CUT

function check_candidate(V1):
crossings← 0
for each (u, v) ∈ E do

if u ∈ V1 ∧ v ∈ V \ V1 then
crossings← crossings + 1

return crossings ≥ K

8 SUBSET SUM

Definition 12.7. SUBSET SUM: Given a multiset S of integers and an integer K, is there a subset S′ ⊆ S such
that:

∑
i∈S′

i = K?

A multiset is a set with possible duplicates; what differentiates it from a sequence is that order is not important.

Like in problems concerning graphs, we can consider all possible subsets. There are precisely 2|S| subsets of S (the
size of its powerset) – an exponential number.

We can check if a candidate subset’s element sum up to K in polynomial time:

Algorithm 12.7 Polynomial checking of a candidate for SUBSET SUM

function check_candidate((s1, s2, ..., sm)):
sum← 0
for each i← 1, m do

sum← sum + si

return sum = K

9 PARTITIONING

Definition 12.8. PARTITIONING: Given a multiset S of integers, can this be partitioned into two complemen-
tary subsets with the same sum of elements?

Again, we can go through all possible 2|S| subsets and see if any of them is a solution.

Algorithm 12.8 Polynomial checking of a candidate for PARTITIONING

function check_candidate(S1):
sum1 ← 0
sum2 ← 0
for each s ∈ S do

if s ∈ S1 then
sum1 ← sum1 + s

else
sum2 ← sum2 + s

return sum1 = sum2

10 KNAPSACK

Definition 12.9. KNAPSACK: Given a set S of items characterized by weight and value, a weight limit W and
a goal K, can we select a subset of items whose total weight is at most W and whose total value is at least K?

The problem’s name hints at how you should visualize it: you have some container with a limited capacity in which
you need to place some of your prized possessions. The goal is to get as much value as possible; intuitively, heavy
items with low values are bad, while light items of high value are good.
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More formally, our collection of items is a set of pairs (wi, vi). We are interested in whether a set S′ ⊆ S exists,
such that:

•
∑
i∈S′

wi ≤W

•
∑
i∈S′

vi ≥ K

There are 2|S| possible subsets. Given one, it should now be easy to imagine how a polynomial-time verification
works: we just go through all the elements, maintaining a sum of weights and a sum of values. At the end we
return a conjunction of the target inequalities.

10.1 Dynamic programming and pseudopolynomials
If you studied algorithms before, you may be aware of a solution to this problem that leverages the technique of
dynamic programming.

Algorithm 12.9 Dynamic programming solution for KNAPSACK

function solve_knapsack(S, W, K):
Create table V of size (W + 1)× (|S|+ 1)
for each w ← 0, W do

V [w][0]← 0
for each i← 0, |S| do

V [0][i]← 0
for each i← 1, |S| do

for each w ← 1, W do
if wi ≤ w then

V [w][i]← max (V [w][i− 1], vi + V [w − wi][i− 1])
else

V [w][i]← V [w][i− 1]

return V [W ][|S|] ≥ K

It helps to understand the solution if you interpret V [w][i] as being the largest value possible with weight less than
w, using any combination of the first i items.

But this solution seems polynomial! Its complexity is given by two nested loops, one ranging over |S| values, the
other over W values. So the overall complexity is O(|S| ·W ).

But remember what W is: an integer input of our problem. Its representation is the binary encoding of W ; the
length of the binary encoding is around log (W ) and the same can be said about all the weights wi.

The length of the input is actually on the order of |S| · log (W ). Thus O(|S| ·W ) = O(|S| · 2log (W )) is exponential
in the size of the input.

The complexity of algorithms like this one for KNAPSACK is known as pseudopolynomial.

11 SAT

We now move on to discuss boolean formulas. Many problems can be expressed as some sort of boolean formula.
Two lectures from now, we shall see that all the problems presented so far can be “reduced” to a boolean problem.
We can actually prove that any problem in this category (NP -complete problems) can be reduced to SAT.

First, let’s set some definitions related to boolean formulas.
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Definition 12.10. A truth assignment T on a set of boolean variables X is a function: T : X ′ →
{FALSE, TRUE}, where X ′ ⊆ X.

Given a boolean expression ϕ, its set of variables V ar(ϕ) is defined inductively as follows, for the various
possible forms of ϕ:

• ϕ = x: V ar(ϕ) = {x}

• ϕ = ϕ1: V ar(ϕ) = V ar(ϕ1)

• ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2: V ar(ϕ) = V ar(ϕ1) ∪ V ar(ϕ2)

T ⊨ ϕ (read: “T satisfies ϕ”) def=

• ϕ is of the form x : T (x) = TRUE

• ϕ is of the form ϕ1 : T (x)�⊨ϕ1

• ϕ is of the form ϕ1 ∧ ϕ2 : T (x) ⊨ ϕ1 and T (x) ⊨ ϕ2

• ϕ is of the form ϕ1 ∧ ϕ2 : T (x) ⊨ ϕ1 or T (x) ⊨ ϕ2

Definition 12.11. SAT: Given a boolean formula ϕ, is it satisfiable?
A formula is satisfiable if there exists a truth assignment to its variables that makes it TRUE.

There are 2|V ar(ϕ)| possible truth assignments.

Given a truth assignment, we can just go through the formula and replace each occurrence of a variable xi with
the truth value T (xi). We then recursively evaluate each operator (of the forms ϕ, ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2.

Algorithm 12.10 Polynomial checking of a candidate for SAT

function check_candidate(T ):
Replace each variable x of ϕ with the boolean value T (x).
while ϕ is not of the form TRUE or FALSE do

Find all subexpressions working on constants and evaluate them
return what is left of the formula

Replacing the variables with their truth value can be done in time linear in |ϕ|; the while loop finds expressions
such as TRUE, FALSE ∧ TRUE and solves them (based on truth-table logic), replacing them with a boolean constant.
At each step, the size of the remaining expression shrinks, so the algorithm will perform O(|ϕ|) such iterations.

In the end, a single constant will remain; if it is TRUE then the candidate truth assignment T satisfies ϕ, otherwise
it doesn’t.

12 CNF SAT

Definition 12.12. CNF SAT: Given a boolean formula ϕ, in Conjunctive Normal Form, is it satisfiable?
A formula is in Conjunctive Normal Form if it is a conjunction of clauses, with each clause being a disjunc-

tion of literals. A literal is either a variable, or a negated variable.

In other words, a boolean formula ϕ in CNF with m clauses is of the form:

m∧
i=1

(
ki∨

j=1
Lj)

Where each clause i has ki literals Lj and each Lj is either x or x, for some variable x of ϕ.

The same solution described for SAT would also work in this case.

This is a more “restricted” version of SAT (the inputs have a special structure), but it is also believed to have no
polynomial solution§.

§More importantly, it can be shown that if CNF SAT has a polynomial-time solution, then so does SAT; and if SAT doesn’t have a
polynomial-time solution, neither does CNF SAT.
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13 3SAT

Definition 12.13. 3SAT: Given a boolean formula ϕ in Conjunctive Normal Form, where each clause has
exactly three literals, is it satisfiable?

We see here yet another iteration of the SAT problem with an extra constraint on the number of variables in a
clause.

As before, the same algorithm for SAT also solves 3SAT, but does the fixed (and small) number of variables enable
a more efficient solution?

The answer might be surprising: we can formally show that 3SAT is “as hard” as SAT††. This implies that if, as is
widely believed, there is no polynomial solution for SAT, then there is no polynomial solution for 3SAT either.

However, constraining the problem even more brings us into the realm of polynomial certainty: the similar problem
2SAT has been proven to be in P !

14 References and further reading
Most of the problems presented here (or a variant of them) have been described in a very influential article
by Richard Karp, published in 1972: “Reducibility Among Combinatorial Problems” [1]. The article identifies 21
practically-relevant combinatorics problems and shows that SAT could be reduced to any of them. Combined with
a previous result by Stephen Cook, this means all these problem are “NP -complete”; the precise definition and
importance of this concept will be addressed in the next lecture.

A polynomial time algorithm for the problem 2SAT can be found in the ’79 article by Bengt Aspvall, Michael Plass
and Robert Tarjan: “A linear-time algorithm for testing the truth of certain quantified boolean formulas” [2].
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††Two lectures from now, we will provide a reasonable formal definition for what it means for two problems to have the same
“hardness”, using polynomial-time many-one reductions.

8


	Graph problems
	VERTEX COVER
	CLIQUE
	COLORING
	HAMILTONIAN PATH
	TSP
	CUT
	SUBSET SUM
	PARTITIONING
	KNAPSACK
	Dynamic programming and pseudopolynomials

	SAT
	CNF SAT
	3SAT
	References and further reading

