
15. HARDNESS AND COMPLETENESS
Mihai-Valentin DUMITRU

mihai.dumitru2201@upb.ro

November 2024

In the last three lectures we have looked at a collection of problems that share some interesting properties.

First, all these problems have an easily-verifiable solution. We have formalized this property by employing the
notion of polynomial certificates and defined a complexity class, NP, to consist of exactly those problems which
have a polynomial certificate. We can say now that SAT, VERTEX COVER, SUBSET SUM etc. are in NP.

Another shared characteristic of these problems is that, while obviously solvable by trying all possible solutions,
there is no known tractable solution, i.e. one that runs in polynomial time. However, there is also no known proof
that such a solution doesn’t exist. This gives rise to the “P versus NP problem”: are all easily-verifiable problems,
easily solvable?

In a previous lecture we saw how we can reduce some of these problems to each other in polynomial time and
hopefully gained the intuition that any of them can be reduced to any other. In this sense, they are “equally
difficult”.

Now we are ready to expand on the structure of our complexity classes and discuss the class of “the hardest
problems in NP”.

1 Hardness and Completeness
We pointed out that, intuitively, if a problem f reduces to another problem g (f ≤P g), that means that g is
harder (or of equal “difficulty” to f). This makes sense because the existence of a reduction says that, with some
preprocessing, we can turn any input instance of f into an input instance of g and feed it into our g solver to get the
correct answer. In particular, note that the “g solver” can be much more costly than the preprocessing: a solution
for g may have exponential time complexity, but the transformation involved in the reduction has, by definition,
polynomial time complexity.

Now we can move on to think of hardness in relation to a class of problems. A “hard problem” in this sense would
be one that is harder (or as-hard-as) than any problem in that complexity class.

Let us focus on the class NP and polynomial-time many-one reductions:

Definition 15.1.
f is NP-Hard def= ∀g ∈ NP, g ≤P f

NPH def= {f : Σ∗ → {FALSE, TRUE} | f is NP-hard }

The concept of hardness can be extended to other classes (e.g. we can talk about “P-Hardness”) and other types
of reductions; but we shall only consider NP-hardness.

The concept of “hardness” is closely related to that of “completeness”.

Definition 15.2.
f is NP-complete def=

{
f ∈ NP
f ∈ NPH

NPC def= {f : Σ∗ → {FALSE, TRUE} | f is NP-complete }

It is not immediately obvious that such problems exist. In the next section, we shall prove that SAT is just such
a problem; then we will show that all problems introduced under the description “hard?” fit in this class. In fact,
NP-completeness is the formalization of the notion “easy-to-check, possibly hard-to-find solution”.

1

Analiza Algoritmilor Hardness and Completeness

2 SAT is NP-complete
When we introduced SAT, we also presented a deterministic polynomial algorithm for verifying a solution; later
we explicitly identified a truth assignment as a certificate, polynomial in the size of the input.

This shows that SAT ∈ NP. To prove completeness, all that is left to do is to prove hardness.

Theorem 15.1.
∀f ∈ NP, f ≤P SAT

Any problem f ∈ NP has, by definition, some Nondeterministic Turing Machine Nf that decides it. The idea of
our proof is to take the encoding of Nf ’s computational history on some word w and create a formula ϕ that is
satisfiable if and only if Nf [w] → TRUE. We must also take care that this transformation can be done in polynomial
time.

Because we’re talking about NP problems, it means that there is some k ∈ N, such that Nf [w] takes less than
|w|k − 3† transitions. Moreover, remember that extending the tape contents by overwriting a blank symbol with
some non-blank one requires an extra transition, so after |w|k − 3 transitions the tape contents are at most |w|k − 3
symbols long. We can summarize an entire computation path of Nf [w] as a |w|k × |w|k tableau of symbols.

When we studied the proof of undecidability for Post’s Correspondence Problem, we introduced a succinct way
of representing each configuration as a string, by using separate symbols for each state and writing the “current
state symbol” to the left of the current symbol under the machine head. So (100, 10, q1) gets encoded as the string:
100q110

We expand each of these configuration strings with additional blanks, until they are all |w|k − 2 symbols in length
(note that we need an extra “tape symbol”, such as q1). The rows of the tableau will represent these configurations;
each row begins and ends with a special delimiter symbol: #.

Thus, the first row of the table will be the encoding of the initial configuration, the second row will be the en-
coding of the configuration resulting after one transition and so on. The last row of the table will contain a final
configuration (accepting or rejecting).

We have thus a tableau of |w|2k symbols, drawn from the alphabet: Π = Q∪Γ∪{#}. The goal is to form a boolean
formula that is equivalent to telling whether the tableau is an accepting one or not.

The formula will have around‡ m = |Π||w|2k variables. Each variable xi,j,s tells us if on line i, column j, the value
of the cell is the symbol s.

Structurally, the formula consists of four parts:

ϕ = ϕcell ∧ ϕinit ∧ ϕtransition ∧ ϕaccept

The first three serve to guarantee that our tableau is well-formed. ϕcell expresses the fact that each cell should
contain exactly one symbol:

ϕcell =
∧

1≤i,j≤|w|k


 ∨

s∈Π
xi,j,s

 ∧


∧

s,t∈Π
s̸=t

(xi,j,s ∨ xi,j,t)




Do not be dismayed by how intimidating the formal notation looks! What is expressed here is actually quite simple.
For each cell Ti,j of the tableau T , we must ensure the following two conditions simultaneously:

• there is some symbol from Π in the cell

• for each pair of distinct symbols of Π we choose, at least one must not be in the cell

†Read this footnote after you understand the described tableau; we want it to be |w|k ×|w|k; say the machine does t(|w|) transitions.
Each configuration’s tape contents are shorter than, but can be extended to, t(|w|) + 1. We also want to add two columns of #s at
the beginning and the end, so the table has t(|w|) + 3 columns, so it must have t(|w|) + 3 lines, thus t(|w|) = |w|k − 3.

‡We allow ourselves to be sloppy, because we don’t aim to provide exact answers. Our goal here is to show that this can be done
in polynomial time; this keeps our analysis clean and readable.

2

Analiza Algoritmilor Hardness and Completeness

These two properties together express that in each cell there is exactly one symbol. It may seem strange at first,
but it is a common technique of expressing such constraints using boolean formulas.

ϕinit ensures that the first line of the tableau represents the encoding of the initial configuration of Nf on w.

ϕinit = x1,1,# ∧ x1,2,q1 ∧
 ∧

1≤i≤|w|
x1,2+i,wi

 ∧
 ∧

|w|+3≤j<|w|k
x1,j,□

 ∧ x1,|w|k,#

ϕtransition is the most complex formula, which has to ensure that each two consecutive rows represent a valid
yielding of one configuration from another. Remember how we built part of the tiles for the proof of PCP’s
undecidability, to ensure that the bottom part represents the one-step modification of some transition from the
top part. What allowed us to do so was the fact that changes to the configuration are localized to at most three
symbols. We will make use of this idea here as well, and envision 2×3 windows whose correctness we must ensure;
i.e. given a specific row, we can look at each triplet of symbols§ and place some conditions on the triplet below,
based on Nf ’s transition rules.

ϕtransition =
∧

1≤i<|w|k,1≤j<|w|k−1
windowi,j

Each window formula guarantees that a particular 2 × 3 windows of symbols is valid, according to the transition
function. We skip writing out such a formula explicitly, but it’s important to note that it only depends on Nf ’s
description and not on the size of the input |w|.

windowi,j =
∨

s1,...,s6 is a valid window

(xi,j,s1 ∧ xi,j+1,s2 ∧ xi,j+2,s3 ∧ xi+1,j,s4 ∧ xi+1,j+1,s5 ∧ xi+1,j+2,s6)

Note that Nf is nondeterministic, so a particular configuration can yield in a single step two configurations.
But this just means that we have more “valid windows” then we would have for a deterministic machine. The
window formulas cover the nondeterministic character of the machine.

Lastly, we need to ensure that the last row contains the accepting state Y . But what if not all computational paths
take exactly nk transitions? Some may be shorter, so the last rows of the tableau, after the one with the encoding
of a final configuration are irrelevant. But this means that we must search for the accepting state in any row, not
just the last:

ϕaccept =
∨

1≤i,j≤|w|k
xi,j,Y

Let us now examine the size of our formula and show that it can be built in polynomial time.

ϕcell consists of a conjunction with |w|2k operands. Each operand is a conjunction between a disjunction of |Π|
terms and a conjunction of |Π|2 terms; note that these depend solely on the machine Nf not on the length of the
input w, thus we consider them of fixed size. There are Θ(|Π||w|2k) variables, so each of them can be represented
by a binary string of length ⌈log2(|Π||w|2k)⌉. So ϕcell has a size of Θ(|w|2k log2(|w|2k)) symbols.

Similarly, ϕtransition and ϕaccept also contain a fixed size operation for each cell of the tableau, so they each have
a length of Θ(|w|2k log2(|w|2k)).

Lastly, ϕinit has an operand for each cell in the top row, so it has a size of Θ(|w|k log2(|w|2k)).

It follows that the size of ϕ is Θ(|w|2k log2(|w|2k)) – a polynomial. Building it is straightforward: we only need to
imagine nested loops to go through the rows and columns of the table, outputting some part of the formula based
on the current cell.

§For a row that starts with #011q210... we would look at #01, 011, 11q2 etc.

3

Analiza Algoritmilor Hardness and Completeness

3 Useful theorems about Hardness and Completeness

Theorem 15.2.
SAT ∈ P ⇔ P = NP

Proof. The implication to the left is obvious from the fact that SAT ∈ NP, so let’s focus on the “right” direction.

If SAT ∈ P, then there exists a deterministic machine DSAT that decides SAT in polynomial-time.

The theorem in section 2 tells us that any problem f ∈ NP reduces to SAT in polynomial time. So there is a
transformation t, computable in polynomial-time by a deterministic machine Dt.

Chaining these two machines (Dt and DSAT), we obtain a deterministic polynomial-time machine for any arbitrary
NP problem f .

Note that we can restate this theorem replacing SAT with any other NPH problem.

Theorem 15.3.
∃f, such that

{
f ∈ NPH
f ∈ P ⇔ P = NP

This is an important result because it shows that “the P versus NP problem” is tied to many other questions which

turn out to be equivalent. For example, a decisive “yes” or “no” answer to the open problem “SAT
?
∈ P” would

also be an answer to P ?= NP. And this holds true for questions regarding the presence in P of any other NPH
problem.

But what other problems of this kind are there?

One way to show that another problem (e.g. VERTEX COVER) is NP-complete is to make a construction similar to
the one we did for SAT: a reduction from an arbitrary problem. However this is quite difficult and laborious, but
luckily we can take a shortcut by employing reductions.

Theorem 15.4.
SAT ≤P g ⇔ g ∈ NPH

Proof. The left implication is easy to see from the definition of NPH. So we will focus on the “right” direction.

If SAT ≤P g, then there exists a polynomial-time-computable transformation t1 that maps inputs of SAT to inputs
of g such that they have the same truth-value.

We know now that SAT is NP-complete, so that for each problem f ∈ NP there exists a polynomial-time-
computable transformation tf that maps inputs of f to inputs of SAT such that they have the same truth-value.

The composition of these two transformations, t = t1 ◦ tf is a polynomial-time-computable transformation that
maps inputs of f to inputs of g such that they have the same truth-value.

Now we can show NP-hardness simply by performing a reduction from SAT. Once we show a new problem to be
NP-Hard, we can then use it as a point of further reference. This brings us to the generalization:

Theorem 15.5.
f ∈ NPH
f ≤P g

}
⇒ g ∈ NPH

The proof of this involves, as before, the composition of two polynomial-time reductions.

Any theorem in this section regarding NPH can be transformed into one about NPC if we just add a condition
that the relevant problem is also in NP.

We have suggested in the introduction that the class NPC consists of “the hardest problems in NP”. But does this
concept even make sense? We do not know whether P = NP; if the answer is “yes”, aren’t all problems as hard?
The answer is “almost”.

4

Analiza Algoritmilor Hardness and Completeness

Theorem 15.6.
P = NP ⇔ NPC = NP \ {fFALSE, fTRUE}

fFALSE and fTRUE are the constant functions that map every input to the values FALSE and TRUE respectively.

Proof. If P = NP, each problem in NP has a deterministic-polynomial-time solution. So any problem can be
reduced to almost any problem: f ≤P g. The transformation needed by the polynomial-time reduction can simply
solve f in polynomial-time and inspect the answer; if it is TRUE, then it produces a word x such that g(x) = TRUE,
otherwise it produces y such that g(y) = FALSE.

But for this to be possible, such an x and y must exist; which is the case for all functions, except for the two
constant ones.

For the reverse implication, we can reduce SAT to some problem that we know is in P (and must be NPC under
the assumption), thus proving that SAT itself is in P. This result combined with Theorem 3 gives us the left hand
side.

4 References and further reading
The theorem in section 2 is generally known as “the Cook-Levin theorem”.

In his 1971 paper “The Complexity of Theorem-Proving Procedures” [1], Stephen Cook proved that all problems
in NP are polynomially reducible to the problem of tautologies (this is similar to SAT, but we have to determine if
all truth assignments satisfy a given formula).

Independently, Leonid Levin showed in 1973 [2] that a set of six problems are NPC and that if any of them
are in P, then they all are and vice-versa. An English translation of this two-page paper can be found in Boris
Trakhtenbrot’s 1984 survey “A survey of Russian approaches to perebor (brute-force searches) algorithms” [3].

The proof presented here is adapted from [4], Chapter 7, proof of Theorem 7.37.

Interest for NP-completeness and NP-complete problems was greatly increased by Richard Karp’s 1972 article
“Reducibility Among Combinatorial Problems” [5]. In this paper, Karp addresses 21 problems of practical interests
and shows through various reductions that they are NPC.

Bibliography
[1] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Proceedings of the 3rd Annual ACM

Symposium on Theory of Computing. ACM, 1971, pp. 151–158.
[2] Левин, Леонид Анатольевич. “Универсальные задачи перебора”. In: Проблемы передачи информации

9.3 (1973), pp. 115–116.
[3] Boris A Trakhtenbrot. “A survey of Russian approaches to perebor (brute-force searches) algorithms”. In:

Annals of the History of Computing 6.4 (1984), pp. 384–400.
[4] Michael Sipser. Introduction to the Theory of Computation, Third Edition. CENGAGE Learning, 2012.
[5] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings of a symposium on the

Complexity of Computer Computations. The IBM Research Symposia Series. Plenum Press, New York, 1972,
pp. 85–103.

5

	Hardness and Completeness
	SAT is NP-complete
	Useful theorems about Hardness and Completeness
	References and further reading

