
MULTITAPE TURING MACHINES
Mihai-Valentin DUMITRU

mihai.dumitru2201@upb.ro

October 2023

We introduce a new model of computation – a Turing Machine with k heads, each positioned over one of k tapes,
for some natural number k ≥ 2.

At first glance, this model might seem “more powerful” than a single-tape machine: it can make use of information
written on multiple tapes at once. Indeed, there are some problems which can be solved more efficiently on a
multitape Turing Machine.

However, from the point of view of computability, we shall soon see that there is no difference in “computational
power”: the classes of problems that can be solved† by a k-tape‡ machine are exactly those that can be solved by a
single-tape machine.

Then why bother with multitape Turing Machines in the context of Computability Theory? The main reason is that
they can make some proofs easier to follow. Our next relevant goal is to show the existence of a “Universal Turing
Machine”, a single machine that can solve any function that is solvable. That construction will involve a Turing
Machine with 3 tapes, for ease of visualization.

We now informally describe how a multitape machine can be visualized and how it works:

• There is still a single control unit of the machine, a single internal state.

• There are k different tapes (imagine them laid out vertically, one above the other)

• for each tape, there is a read/write head which, at any step of computation, is positioned over some cell of
that tape.

• Depending on the combination of internal state and the k-tuple of currently read symbols, the machine makes
some transition.

• When transitioning, the machine does three things:

1. It goes to a new internal state; or remains in the same one.

2. For each of its heads, it writes some new symbol on the cell under it; or leaves that cell unchanged.

More explicitly, the machine writes a new symbol on each tape, not necessarily the same symbol on all
tapes.

3. It moves each head, independently, to point to the cell immediately on the left or right of the current
cell; or leaves it where it is.

More explicitly, the machine moves each head at most one position, not necessarily all heads in the
same direction.

We will now quickly go through some formal definitions to bring us to the same point where we left the single-tape
machine (e.g. configurations, acceptance, decision etc.)

If you understood the definitions for the single-tape machine, these should seem to you very straightforward, so
few further explanations are provided and you can probably skip straight to section 5.

†Remember that by “solve” we mean one of: accept, decide, compute
‡Regardless of how high the value of k is.

1

1 Formal definition

Definition 1.1. A multitape Turing Machine is a 6-tuple: (Q, Σ, Γ, B, q1, δ).

• The first five members: Q, Σ, Γ, B, q1 – have the same significance as for a single-tape Turing Machine.

• δ : Q× Γk → Q′ × (Γ× {←,−,→})k

2 Configurations

Definition 2.1. A configuration of a k-tape Turing Machine M = (Q, Σ, Γ, B, q1, δ) is a (k + 1)-tuple
((γ1

L, γ1
R), (γ2

L, γ2
R), ...(γk

L, γk
R), q) where q is the current state and each γi

L and γi
R encode the contents to

the left and right of the head, for the ith tape.

Definition 2.2. The initial configuration of a k-tape Turing machine M = (Q, Σ, Γ, B, q1, δ) on input w is
((ε, w), (ε,□), ..., (ε,□), q1).

We shall call it CM
0 (w).

This tells us that, initially, the input is written on the first tape and all the others are empty.

Definition 2.3. A halting configuration of a k-tape Turing machine M = (Q, Σ, Γ, B, q1, δ) on input w is
((ϕ1, µ1), (ϕ2, µ2), ..., (ϕk, µk), qf), where ε is the empty string, ϕi, µi ∈ Γ∗, for i = 1, k and qf ∈ {Y, N, H}.
Specifically, an accepting configuration is one where qf = Y and a rejecting configuration is one where qf = N .

2

3 Going from one configuration to another

Definition 3.1. Let M = (Q, Σ, Γ, B, q1, δ) be a k-tape Turing Machine.
We say that C ⊢M C ′ (read “from configuration C, machine M goes to configuration C ′ in one step”) if,

in a single transition, the machine goes from configuration C to configuration C ′.
Remember that a configuration is a tuple consisting of k pairs of strings and a state. For each k pair,

depending on the transition function δ, the following changes are applied to determine the next configuration:

1. δ(p, a) = (s, b,−):

1.1. (ϕ, aµ) ⊢M (ϕ, bµ)

2. δ(p, a) = (s, b,→):

2.1. (ϕ, acµ) ⊢M (ϕb, cµ)

2.2. (ϕ, a) ⊢M (ϕb,□)

3. δ(p, a) = (s, b,←):

3.1. (ϕc, aµ) ⊢M (ϕ, cbµ)

3.2. (ε, aµ) ⊢M (ε,□bµ)

Where:

• ϕ, µ ∈ Γ′∗ (possibly-empty strings of tape symbols)

• a, b, c ∈ Γ

• q, s ∈ Q

We abuse notation here and use a specialized version of concatenation where concatenating a blank to the
end of the empty string results in the empty string: ε□ = ε.

Combined with our specification of “well-behaved machines”, this convention keeps our rules succinct (con-
sider the specifications for the transitions that move the head right).

The next configuration will consist of all k pairs obtained from applying the rules, together with the new
state s.

4 How multitape Turing Machines run
In all definitions in this section:

• M is a k-tape Turing Machine (Q, Σ, Γ, B, q1, δ)

• w, v ∈ Σ∗

• ϕi ∈ Γ′∗, i = 1, k

• µi ∈ Γ∗, i = 1, k (only the first symbol may be a B)

Definition 4.1. M [w]→ TRUE
def= CM

0 (w) ⊢∗
M ((ϕ1, µ1), (ϕ2, µ2), ..., (ϕk, µk), Y)

Definition 4.2. M [w]→ FALSE
def= CM

0 (w) ⊢∗
M ((ϕ1, µ1), (ϕ2, µ2), ..., (ϕk, µk), N)

Definition 4.3. M [w]→ v
def= CM

0 (w) ⊢∗
M ((ϕ1, µ1), (ϕ2, µ2), ..., (ϕk, µk), H) and:

• ϕkµk = v, if v ̸= ε

• ϕk = ε, µk = B, if v = ε

The output of a k-tape machine consists in the tape contents of the k-th tape.

3

The rest of the definitions in Section 4 of the previous lecture are identical for multitape Turing Machines. Same
for definitions 5.1, 6.1 and 7.1.

5 Machine equivalence
Before we prove that for each multitape Turing machine, there exists an equivalent single-tape one, we need to
specify what we mean by “equivalence” between two machines.

Definition 5.1. Let M1 and M2 be two Turing Machines with input alphabets Σ1 and Σ2 respectively; and a
word expressible in both alphabets, w ∈ Σ1 ∩ Σ2:

M1[w] ≡M2[w] def= (M1[w]→ X ∧M2[w]→ X) ∨
(M1[w]→ TRUE ∧M2[w]→ TRUE) ∨
(M1[w]→ FALSE ∧M2[w]→ FALSE) ∨
(M1[w]→⊥ ∧M2[w]→⊥)

where X is a word expressible in both tape alphabets X ∈ (Γ′
1 ∩ Γ′

2)∗.

Read this as: “on input w, M1 and M2 yield the same result”.

The term “result” here is a bit of a stretch, because the machines could also not halt. This is why formal definitions
are important, to avoid confusion caused by the vagueness of natural terms.

So two machines “yield the same result” on an input if one of these holds true:

• both machines accept the input, by eventually transitioning to state Y

• both machines reject the input, by eventually transitioning to state N

• both machines eventually transition to state H leaving the same sequence of non-blanks on the tape

• both machines continue computation forever, never halting

Definition 5.2. For two machines M1 and M2 with the same input alphabet Σ:

M1 ≡M2
def= ∀w ∈ Σ∗, M1[w] ≡M2[w]

6 Equivalence with single-tape Turing Machines
We claimed that multitape machines and single-tape machines are computationally equivalent. We now formulate
this as a theorem and prove it.§

Theorem 6.1. For any k-tape machine: Mm = (Qm, Σ, Γm, Bm, q1m
, δm), there exists a single-tape machine

Ms = (Qs, Σ, Γs, Bs, q1s
, δs) such that Mm ≡Ms.

Note that we’re only talking about machines with the same input alphabet.

We devise a precise simulation of Mm’s behavior: Ms will mimic the effect of each transition of Mm on the input.
For each transition that Mm makes, Ms will need to make several (in fact, quite a large number of) transitions to
simulate it.

We will keep the contents of all k tapes concatenated onto the single tape, separated by a new symbol ⋄ that we
introduce (⋄ /∈ Γm, ⋄ /∈ Σ).

We also need to keep track of where each of the k heads are placed onto their corresponding tape. To do this, for
each symbol g ∈ Γm, we introduce a new symbol g that stands for “the head being positioned over symbol g”.

Ms uses blanks to delimit the relevant portion of the tape; so does Mm for its k tapes. To avoid confusion, we
distinguish between “the blank symbol of Mm” and “the blank symbol of Ms”.

§We will actually prove a stronger result: not only can we construct a single-tape machine that gives the same result, but one that
can simulate every step of the multitape machine’s computation. However, this is not relevant for our purposes, so we won’t focus on
it.

4

For example, if Γm = {0, 1,□m}, then Γs will contain at least: 0, 1,□m, 0, 1,□m, ⋄,□.

For each state q of Mm we will need several states in Ms. First we will make a simple copy; the copy of q1m
will be

q1s , the initial state of Ms.

The very first thing Ms needs to do when started on input w is to recreate the initial configuration of Mm[w].

For example, consider the input 10011 and k = 4. Ms will start with the following tape:

...□□□10011□□□...

Using 2k + 3 auxiliary states, Ms will modify the tape to look like this:

...□□□ ⋄ 10011 ⋄□m ⋄□m ⋄□m ⋄□□□...

Then it will move its head over the first underlined symbol; in this example, the leftmost 1. From here, the
simulation of Mm’s transitions begins.

Ms will simulate each transition of Mm, one at a time; for ease of reference, we shall refer to the simulation of one
transition of Mm as a “phase”. Each phase consists of the following steps:

1. At the start of a phase, Ms will be in some state q_copy, corresponding to a state q of Mm and the head of
Ms will be positioned over the leftmost underlined symbol – i.e. where the first head of Mm is.

Ms needs to go rightward through the whole tape, finding the k symbols marked with an underline (which
indicate the position of one of the k heads of Mm).

Each time it finds the position of one of Mm’s heads, it needs to memorize the symbol under it, in order to
build the current “symbol k-tuple” which determines the transition. Remember that memorization of a fixed
amount of information can be achieved using states:

• from state q_copy, when we encounter a relevant symbol g1 (g1 ∈ Γm), we transition to one of |Γm|
possible states q_copyg1

• from each of the |Γm| states q_copyg1 , when we encounter a relevant symbol g2, we transition to one of
|Γm| possible states q_copyg1g2

• etc.

For other symbols, remain in the same state and move right.

In summary, for each state q of Mm we need:

• a copy of it, q_copy

• |Γm| new states q_copyg1

• |Γm|2 new states q_copyg1g2

• |Γm|3 new states q_copyg1g2g3

• ...

• |Γm|k new states q_copyg1g2g3...gk

A total of |Qm|(1 + |Γm| (|Γm|k−1)
|Γm|−1) new states.

2. Once we reach a state of the form q_copyg1g2g3...gk
, we have to simulate the transition given by

δm(q, (g1, g2, ..., gk)) = (s, (c1, D1), (c2, D2), ..., (ck, Dk))

(Where c1, c2, ..., ck ∈ Γm and D1, D2, ..., Dk ∈ {←,−,→}.)

5

We will do this by going back through the tape and performing the necessary changes for each head, by first
transitioning into a new state pc_sk

g1g2g3...gk
.

The k superscript signifies that we are now performing the changes for the kth head; after this, we’ll transition
to pc_sk−1

g1g2g3...gk
and go left until we find the (k − 1)th head and so on.

The s shows that we need such a collection of new states for each state s of Mm; after Ms will perform all
symbol modifications, it will transition to the simple copy of s and start a new phase.

So for each of the |Q||Γm|k states q_copyg1g2g3...gk
, we add k|Q′| more states.

3. Each head can only move at most one position to the left or to the right, so our changes will be localized on
the cell with the marked symbol and its two immediate neighbors.

For example, consider the following tape section of Ms that corresponds to some tape i of Mm:

... ⋄ 00101011011101 ⋄ ...

The ith head of Mm will change the symbol currently read (or leave it as it is) and move the head onto the
cell to the left/right or keep it where it is. If the head moves, we need to change the current symbol to its
non-underlined variant, and change the corresponding symbol (either the one to the left, or the one to the
right, depending on where Mm’s ith head will go), to its underlined variant.

But nothing else on this ith tape can change during this one transition; only three symbols, at most, will
differ, but the rest will be the same:

... ⋄ 0010???1011101 ⋄ ...

We now describe the transitions for states pc_sj
g1g2g3...gk

with 2 ≤ j ≤ k.

Let δm(q, (g1, g2, ..., gk)) = (s, (c1, D1), (c2, D2), ..., (ck, Dk)).

From state pc_sj
g1g2g3...gk

, on symbol gj we write:

• cj , if Dj = −

• cj , otherwise

If Dj =→ we move right into a state auxR_sj
g1g2g3...gk

for which

δ(auxR_sj
g1g2g3...gk

, h) = (pc_sj−1
g1g2g3...gk

, h,←),∀h ∈ Γm

Simply put, we move one cell to the right and underline whatever is there to mark that that’s where the
current (jth) head moved; we then move on to find the next head.

Similarly for Dj =←, we move left and use a state of the form auxL.

If Dj = −, we move left and change state to pc_sj−1
g1g2g3...gk

.

So for each of these |Q||Γm|k(k − 1)|Q′| states we add 2 more states.

4. For j = 1, auxiliary states of the form auxL and auxR will transition to state scopy.

An additional 2|Q||Γm|k|Q′| states.

This concludes the current phase.

It follows, by inductive reasoning, that Ms correctly simulates the behavior of Mm.

Ms then has to simply delete all symbols from its tape, except those strictly between the last two ⋄s. This can be
achieved with just a few extra steps. Now, Ms has the same output as Mm.

6

6.1 Shifting the tape contents
A complication arises when one of the simulated k heads is either on the first or the last non-□m symbol, i.e. it’s
immediately to the left/right of a ⋄. For example, if the head is on the first symbol and then it moves left, it will
end up on our special delimitator ⋄. However, from Mm’s point of view, the head should find here a blank symbol.
So we need to add one on demand; and we can do so by shifting the rest of our tape’s contents, one cell to the
right.

10001101 ⋄ 1011 ⋄ 011000001 ⋄ 1101011⋄

10001101 ⋄ 1011 ⋄□m011000001 ⋄ 1101011⋄

10001101 ⋄ 1011 ⋄□m011000001 ⋄ 1101011⋄

To shift tape symbols, we first need to mark the place where we want to create a “hole”. For this we can employ
an additional 2(|Γm| − 1) + 1 symbols (the factor of 2 because we have to address the underlined versions too; the
“-1”, because we’ll never have to shift if there’s already a blank symbol there; the added 1 because of the ⋄). You
can imagine these symbols as a “primed” version of the original; e.g. 1′, 0′, ⋄′, etc.

We then need one state to find the end of the tape contents, one state for each symbol (including “primed” versions)
to copy it and another state to go left to the next symbol to copy.

All the while, we need to remember what we were doing when the need to move tape contents to the right
appeared. We need to add these extra states for each of the auxR_sj

g1g2g3...gk
and auxL_sj

g1g2g3...gk
, j = 1, k states.

Note 6.1. Our single-tape simulating machine seems very large compared to the original multitape machine.
We had to add a lot of tape symbols and a lot of states.

The number of steps involved to simulate just one step of the multitape machine also seems intimidating.
For now, we are not concerned at all with “speed”, or “efficiency”; we just want to show that we can do

this simulation in whatever way possible.
When we move on to Complexity Theory, we will be interested in such measurements; surprisingly, we’ll

see a reasonable framework of judging performance, by which this simulation is not so bad.

7

	Formal definition
	Configurations
	Going from one configuration to another
	How multitape Turing Machines run
	Machine equivalence
	Equivalence with single-tape Turing Machines
	Shifting the tape contents

