
Methods for solving recurrences

Analyzing the complexity of mergesort

The merge function

Consider the following implementation:

1 int∗ merge (int ∗v1 , int n1 , int ∗v2 , int n2)
2 {
3 int∗ r = mal loc ((n1+n2)∗ s izeof (int)) ;
4 int i =0, j =0, k=0;
5
6 while (i<n1 && j<n2)
7 {
8 i f (v1 [i] > v2 [j])
9 r [k++] = v2 [j ++];

10 else
11 r [k++] = v1 [i ++];
12 }
13
14 while (i<n1)
15 r [k++] = v1 [i ++];
16
17 while (j<n2)
18 r [k++] = v2 [j ++]
19
20 return r ;
21 }

We can easily identify the following asymptotic bounds for each line:

• lines 3 and 5 → O(n1 + n2)

• line 13 → O(n1)

• line 16 → O(n2)

• it can be said that every other line runs in constant time O(1)

1

Summing these up, we get a bound for the entire function:

merge = O(n1 + n2) +O(n1) +O(n2) = O(n1 + n2)

Another bound can be found by using our intuition; each element from the
two vectors must be read at least once, and thus we have: merge = Ω(n1 +n2).
When the two bounds are combined, the final result is: merge = Θ(n1 + n2).

The mergesort function

The implementation is give below:

1 int∗ mergesort (int ∗v , int n)
2 {
3 i f (n == 1)
4 return v ;
5
6 v1 = mal loc (n/2∗ s izeof (int)) ;
7 v2 = mal loc ((n − n/2)∗ s izeof (int)) ;
8
9 int i = 0 ;

10
11 while (i < n/2)
12 v1 [i] = v [i] ;
13
14 while (i < n)
15 v2 [n/2 − i] = v [i] ;
16
17 v1 = mergesort (v , n / 2) ;
18 v2 = mergesort (v , n − n / 2) ;
19
20 return merge (v1 , n/2 , v2 , n − n / 2) ;
21 }

We can try once more to assign a bound to each line:

• lines 6 and 7 → O(n/2) = O(n)

• lines 11 and 14 → Θ(n/2) = Θ(n)

• line 17→ T (bn/2c); by this we mean the complexity of the same function,
but with a different input size (in this case, n divided by 2 and rounded
down)

• line 18 → T (dn/2e)

• line 20 → Θ(n/2 + n− n/2) = Θ(n)

• other lines → O(1)

2

Before adding them up, we must take into consideration line 3. If n =
1, the whole function runs in O(1) because the return statement is executed.
Otherwise, we get:

T (n) = O(n) + Θ(n) + T (bn/2c) + T (dn/2e)

This can further change into:

T (n) = T (bn/2c) + T (dn/2e) + Θ(n)

For all algorithms that we are going to encounter, T (n) is considered to be
= O(1), for sufficiently small values of n. Because of this, the distinction made
before is no longer necessary, and we rely exclusively on the recurrence relation
above to describe the running time of the function.

Another simplifying assumption is that bn/2c = dn/2e = n/2. For large
values of n (which are usually the ones of interest in complexity analysis), we
consider that the addition or subtraction of a single unit does not influence the
result. Thus, the previous expression becomes:

T (n) = T (n/2) + T (n/2) + Θ(n) = 2T (n/2) + Θ(n)

Finally, we replace the Θ(n) above (which denotes a set of functions) with a
single function from Θ(n), written as cn, where c ∈ R is a constant. There are a
number of reasons for this. First of all, the running time of that particular part
of the recurrence relation must be described by a function, and not by a whole
set of functions. Secondly, by not doing this, we risk missing the fact that the
running time of that part gradually decreases as the recurrence unfolds. For
example T (n/2) = 2T (n/4) + Θ(n/2) = 2T (n/4) + Θ(n). By replacing Θ(n)
with cn, we get T (n/2) = 2T (n/4) + cn/2.

The iteration method

This method is helpful in finding an informed estimation about the bounds that
can be applied to the running time of an algorithm. It does not also establish a
definite proof about our findings, but it is of great help as a starting point.

The iteration method consists of (partially) drawing the recursion tree. Each
node represents the cost of a single sub-problem, and the number of its children
is equal to the number of sub-problems that are directly created from that point.
For the mergesort function, we would get something like the following tree:

3

cn

cn
2

cn
22

...

cn
2k

cn
2k

...

cn
22

...
...

cn
2

cn
22

...
...

cn
22

...
...

cn
2k

cn
2k· · ·

How tall is this tree ? The height is equal to k + 1, because we have the
root level and then k additional levels. How large is the value of k? A leaf must
represent a problem that cannot be subdivided any longer; thus we can say that
n
2k

= 1. This leads to n = 2k, which means that k = log n (we omit writing the
base of the logarithm). Thus, the above tree for mergesort is log n + 1 levels
tall. How many leaves can be found on the last level ? The number of nodes
doubles from one level to the next, starting with the root node. There are 2i

nodes on level i (assuming the root node is on level 0), so we have 2logn = n
leaves.

In order to get an estimate for the run time of mergesort we have to sum the
contents of each node. A useful observation is that on every level i, there are 2i

nodes, each one containing the expression cn
2i . The sum for every level i is thus

cn
2i · 2

i = cn. Since there are 1 + log n levels, the global sum is cn(1 + log n) =
cn log n+ cn = Θ(n log n).

The substitution method

The previous method gave us the intuition that mergesort = Θ(n log n), but we
would also like a formal proof, just to be sure. This can be obtained with the
substitution method, which requires a “guess” for T (n) (in our case, we got from
the previous method that T (n) = Θ(n log n)). With this starting point, we rely
on induction to prove the truth of the statement P (n) ≡ c1n log n ≤ T (n) ≤
c2n log n, for all n > n0, n ∈ N, where n0, c1 and c2 are chosen beforehand, as
per the definition of Θ. There are two steps in the induction process:

• we prove that, for any given n ∈ N, if P holds for all natural values smaller
than n (induction hypothesis), then P also holds for n (the induction step).

4

• we prove that P holds for the base case (sometime there are multiple base
cases).

Let’s start with the induction step. We presume that P holds for all values
smaller than n, and try to prove that P (n) also holds based on this assumption.
An interesting value smaller than n is n/2. If P (n/2) holds, it means that
∃n0 ∈ N and c1, c2 ∈ R+ such that ∀n ≥ n0:

c1n/2 log (n/2) ≤ T (n/2) ≤ c2n/2 log (n/2)

Now, we want to substitute (hence “substitution method”) these inequalities
into the recurrence T (n) = 2T (n/2) + cn, and this basically means that we
multiply both ends by 2 and add cn afterwards. By doing this, we get:

2c1n/2 log (n/2) + cn ≤ 2T (n/2) + cn ≤ 2c2n/2 log (n/2) + cn

c1n log (n/2) + cn ≤ T (n) ≤ c2n log (n/2) + cn

c1n(log n− log 2) + cn ≤ T (n) ≤ c2n(log n− log 2) + cn

c1n log n− c1n+ cn ≤ T (n) ≤ c2n log n− c2n+ cn

Remember that the goal of this step is to prove that P (n) holds; in other
words we have to prove that c1n log n ≤ T (n) ≤ c2n log n. For this to be true,
starting from where we just left, we must have cn− c1n ≥ 0 and cn− c2n ≤ 0.
This means that c1 ≤ c and c2 ≥ c. Since c1 can be chosen arbitrarily small
and c2 can be chosen arbitrarily large, the induction step has been successfully
proven.

Why do we need to show that P holds for at least one base case ? Well, the
induction step shows us that we can prove P (n) by relying on that fact that P
holds for smaller values. However, if we follow this reasoning, at some point we
are going to find some m that is the smallest value (or the smallest interesting
value). In this case (base case), we cannot rely on the induction step to prove
P (m), as “all values smaller than m” doesn’t make any sense.

What’s the base case for our recurrence relation ? If we consider 0 to be the
base case, the expression log(0) will show up, which doesn’t make sense. If 1 is
the base case, then we’re going to have 0 ≤ T (n) ≤ 0, but this goes against the
convention that T (1) = O(1). Thus, our base case will be 2 (n0 = 2). For 2,
the inequalities become:

2c1 log 2 ≤ T (2) ≤ 2c2 log 2

2c1 ≤ 2T (1) + 2c ≤ 2c2

2c1 ≤ 2(c+ 1) ≤ 2c2

c1 ≤ c+ 1 ≤ c2
As before, these can be easily satisfied with a proper choice of c, c1 and c2.

It is important to note that we were able to choose the base case at will, because
it represents the n0 from the definition of Θ, which is existentially qualified.

5

Another very important thing is that the constants must not change when
applying the substitution method. Here’s an example of what this means and
why it matters so much: we are going to prove that T (n) = O(n), where
T (n) = 2T (n/2) + n (we omit the base case for brevity). For this problem,
P (n) ≡ T (n) ≤ cn. The induction hypothesis give us T (n/2) ≤ cn/2. During
substitution we get:

T (n) ≤ 2cn/2 + n ≤ cn+ n ≤ (c+ 1)n

While c + 1 is a constant, it is not the one we were looking form, and also
T (n) ≤ (c+ 1)n does not imply that T (n) ≤ cn. The induction step is complete
only if we can prove the exact form of the inequality (in this case T (n) ≤ cn).

The master method

The master method is basically a recipe for solving recurrence relations. We
can use it to obtains answers in very little time, but the drawback is that it
cannot be applied in every situation. It can be used for recurrences of the form
T (n) = aT (n/b) + f(n), where a ≥ 1 and b > 1 are constants, and f(n) is
an asymptotically positive function. There are three possible cases when the
master theorem provides an answer:

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f(n)).

6

