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AA is not a mathematics course, but we will be studying fields such as “Computability Theory” and “Complexity
Theory” which can be considered branches of mathematics.

In our approach, we shall employ mathematical formalism and rigor to reach results that are provably true.

As such, it’s important to recap the relevant mathematical concepts that are studied in the high school curriculum.

This is a short review of various already-familiar mathematical concepts that we consider a prerequisite for AA .

1 Boolean logic
There are two values in boolean logic: FALSE and TRUE.

We can operate directly on this values, or on variables which can take any value out of the two.

1.1 Operators
Boolean operations can be characterized by tables. For an operation with n operands, the first n columns correspond
to each of the operands (represented by variables) and list all the possible combinations of boolean values. The
last column represents the value of the operation for that particular combination of operand values.

• Negation:

x ¬x (read: “not x”)
FALSE TRUE
TRUE FALSE

• Conjunction:

x y x ∧ y (read: “x and y”)
FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

• Disjunction:

x y x ∨ y (read: “x or y”)
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

• Exclusive disjunction:

x y x ⊕ y (read: “x xor y”)
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE FALSE
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2 Sets
A set is commonly denoted as a comma-separated list, surrounded by braces. For example, consider the set:

S = {18, 3, 29}
The order of the contained objects is unimportant and each element can appear only once. The following is the
same set as S:

T = {29, 18, 3}

Definition 0.1. A “set” is an unordered collection of unique objects.

We call the objects in a set its “members” or “elements”.

Sets don’t have to contain numbers, here are some example:

S1 = {“alpha”, “beta”, “gamma”, “delta”}
S2 = {{1, 3}, {4, 81, 32, 2}, {66}}

S3 = {□, △}
There’s a special set with no elements, called “the empty set”, usually denoted by ∅.

2.1 Operators
For a set S and an object a we can use the following operators:

• a ∈ S – a is a member of S

• a /∈ S – a is not a member of S

For two sets A and B we can use the following relations:

• A = B if the sets contain exactly the same objects

• A ̸= B if the sets are not equal

• A ⊆ B (“A is a subset of B”) if all objects in A are also in B

• A ⊊ B (“A is a proper subset of B”) if all objects in A are also in B, but A ̸= B, i.e. B also contains some
other elements

We can also build new sets from existing ones:

• A ∪ B: the union, the set with all objects that are either members of A or of B

• A ∩ B: the intersection, the set with all objects that are members of both A and of B

• A \ B: the difference, the set with all objects that are members of A, but not of B

• A: the complement, the set with all objects that are not in A.

The complement is usually expressed in relation to a large superset of A that is the set of all possible objects;
usually this is implicit in context.

2.2 Finite and infinite sets
Sets can contain either a finite number of objects, or be infinite.

For finite sets, we can describe them by explicitly listing their members; for infinite sets, that is not an option, but
we can either use a “...” notation:
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N = {0, 1, 2, 3, ...}
Z = {..., −2, −1, 0, 1, 2, ...}

or a notation that specifies that the set contains all objects satisfying some predicate (more about them in section 5):

E = {n | n is even }
L = {x | x ≥ 1000}

2.3 Powersets

Definition 0.2. The powerset of a set A is the set consisting of all the subsets of A.

The definition might seem a bit confusing, but hopefully an example can remedy this:

A = {a, b, c}
P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Note that the powerset is a set of sets.

The empty set is a member of any powerset because it is a subset of any set.

2.4 Set diagrams
Usually, it’s helpful to visualize mathematical concepts. We can draw set diagrams to show how sets interact:

A BA ∩ B

Here we can see several sets; for example:

• The circle on the left is set A

• The circle on the right is set B

• The region in the middle where the two circles overlap is their intersection: A ∩ B

• The region outside both circles is the complement of their union: A ∪ B

However, two sets A and B may not intersect; or there might not be any part of A that is outside the intersection.
We can illustrate this by either shading an area to show that it is empty, or simply not show it at all.

Below, you can see two ways of illustrating the case where A ⊊ B:
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A BA ∩ B A, A ∩ B B

3 Sequences
Sequences are denoted by a comma-separated list of items, surrounded by parentheses:

S = (16, 17, 18, 19, 20, 21)

Definition 0.3. A sequence is an ordered collection of objects.

Unlike sets, order matters. The sequence S = (11, 34, 81) is different from T = (34, 81, 11).

3.1 Tuples and infinite sequences
Like sets, sequences can be finite or infinite.

Definition 0.4. A tuple is a finite sequence. More precisely, a k-tuple is a finite sequence of k elements, for
some k ∈ N.
A pair is a 2-tuple.

We call (13, 4) a pair. (4, 6, 8) is a 3-tuple or a triplet. (1, 2, 4, 8, 9, 0) is a 6-tuple.

3.2 Cartesian product of sets

Definition 0.5. For two sets A and B, their Cartesian product A × B is the set of all pairs (a, b), with a ∈ A
and b ∈ B.

Examples:

{15, 16} × {12, 141, 82} = {(15, 12), (15, 141), (15, 82), (16, 12), (16, 141), (16, 82)}

4 Functions

Definition 0.6. A function is a mapping from the elements of a set A to those of a set B.

The notation expressing that “function f maps elements from A to elements of B” is:

f : A → B
A is called “the domain”, while B is called “the codomain”. To denote the value of f for some particular object x,
we write f(x).

Functions always map one set to another, but for convenience, we can say a function “takes k arguments” when its
argument is a k-tuple. In that case, the domain is the Cartesian product of some sets.

h : A × B → C
We will omit a couple of parentheses and always write f(a, b) instead of f((a, b)).

The result of the function can also be a tuple, in which case the codomain is also a product of multiple sets:
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j : N × N → Z × Z

4.1 Representing functions
There are various ways to represent a function. For functions over finite domains, one option is to describe it
explicitly, as a table with two columns:

Example:

f : {1, 3, 23} → {3, 7}

x f(x)
1 3
3 7
23 3

For functions over infinite domains, most often we shall use some mathematical formula:

g : N → N
g(x) = 2x + 1

Here are some concrete mappings of g:

g(0) = 1

g(1) = 3

g(2) = 5

...

g(17) = 35

...

4.2 Injections, surjections and bijections

Definition 0.7. An injection is a function f : D → C such that f(x) = f(y) ⇐⇒ x = y.

In other words, all values from the domain are mapped onto unique values from the codomain.

Alternatively, we can express this property with an adjective, by saying that f is injective.

Definition 0.8. A surjection is a function f : D → C such that ∀y ∈ C, ∃x ∈ D, f(x) = y.

In other words, for each value in the codomain, there is a value from the domain which maps onto it.

Alternatively, we can express this property with an adjective, by saying that f is surjective.

Definition 0.9. A bijection is a function that is both injective and surjective.

Alternatively, we can express this property with an adjective, by saying that f is bijective.

5 Predicates

Definition 0.10. A predicate is a function with a boolean codomain.

In other words, a function that looks like p : A → {FALSE, TRUE}.

If p(x) = TRUE we say that “p holds for object x” and we can shorten it to p(x).
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6 Relations

Definition 0.11. A relation over sets S1, S2, ..., Sn is a subset of the cartesian product S1 × S2 × ... × Sn.

In other words, a relation R : S1 ×S2 × ...×Sn is a set of tuples (x1, x2, ..., xn), where x1 ∈ S1, x2 ∈ S2, ..., xn ∈ Sn.

An example relation is “less-than”, which establishes for a pair (a, b) of natural numbers if a is less than b:

≤: N × N
Because it involved exactly two sets, this is a binary relation.

6.1 Properties of binary relations
Binary relations whose domain is of the form A × A (same set, twice) will be especially important to us.

Here are some relevant properties that such a relation r over A can have:

• reflexivity: ∀x ∈ A, r(x, x)

• transitivity: ∀x, y, z ∈ A, r(x, y) ∧ r(y, z) ⇒ r(x, z)

7 Definitions and statements

Definition 0.12. A definition is a precise, usually formal, description of some mathematical object.

This definition itself is not formally expressed, but it’s precise enough for our purposes. We’ve also seen other
examples of definitions, such as Definition 2 and Definition 2.3.

Definition 0.13. A statement is a mathematical proposition about an object and its properties or relations
to other objects.

An example statement is: 2 + 2 = 4. We won’t always write statements using formal notation; this is also a
statement: “there exists a prime number larger than 10 and smaller than 20”.

Note that something doesn’t have to be true to be a statement; this is also a statement: 18 − 13 = 9.

For some statements we can show that they hold; for others we can show that they don’t.

8 Proofs and theorems

Definition 0.14. A proof is a convincing argument that a particular statement is true.

Generally, a proof is a chain of reasoning that starts from some premises which we already accept, and uses various
methods to derive new statements, which can then further be used as premises for further statements and so on.

The “steps” used in the proof have to be small, clearly understandable leaps from one point to another.

For example, let’s prove that:

∀x ∈ N, (4x + 3) is not a multiple of 6.

Proof. A multiple of 6 must be even. (1)

4x must be even, so 4x + 3 must be odd. (2)

From (1) and (2) it follows that 4x + 3 cannot be a non-zero multiple of 6.

Finally, 4x + 3 is at least 3, so it cannot be 0.

The level of detail needed in a proof is context-dependent. In a high-level math conversation, the original statement
could be judged “obvious” and not given any further justification. In the context of proof theory, more statements
would need justification (e.g. why is (1) true?).
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Definition 0.15. A theorem is an interesting statement for which a proof is given.

Having provided a proof for it, we could consider the earlier statement a theorem; we could give it a easy-to-use
name, such as T1 and refer to it as such in future proofs to keep them short.

9 Proof methods

9.1 Proof by construction
This is probably the most intuitive type of proof. We show that some object exists, by explicitly constructing it.

Let’s try this example:

Theorem 0.1. For any complex number x = a + bi other than 0, there exists exactly one complex number
y = c + di, such that xy = 1

Proof. We start from: xy = 1 and rewrite it as (a + bi)(c + di) = 1.

That is, ac + adi + bci − bd = 1, or (ac − bd) + (ad + bc)i = 1.

From here, we obtain the following two equations (note that what we want is to express c and d in terms of a and
b):

ac − bd = 1
ad + bc = 0

From the first equation, we can rewrite c:

c = 1+bd
a

and substitute it in the second equation:

ad + b+b2d
a = 0

a2d+b+b2d
a = 0

(a2 + b2)d + b = 0
So d is:

d = −b
a2+b2

(Note that the expression is valid, because the premise requires x ̸= 0, so that means at least one of a or b is not
0, so the denominator is not 0).

Going back to c we find its value to be:

c = 1+b −b
a2+b2
a

c =
a2+b2−b2

a2+b2
a

c = a2

a2+b2
1
a

c = a
a2+b2

So, there we have it, our unique number is:
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y = a
a2+b2 + −b

a2+b2 i

9.2 Proof by contradiction
One other type of proof involves assuming a statement is false and showing that this assumption leads to a contra-
diction. This must mean that our original assumption was incorrect, so the original statement was true.

Theorem 0.2.
√

2 is irrational.

Proof. We assume the statement is false, i.e.
√

2 is rational.

That means that there exist two coprime† integers a and b, with b > 0, such that:

√
2 = a

b

We can then square both sides of the equation to obtain:

2 = a2

b2

Multiplying each side by b2, we get:

2b2 = a2

Because a2 is the result of multiplying something by 2, we know that a2 is even. But that is only possible if a
itself is even. (1)

As such, there exists a natural number c, such that a = 2c. Replacing it in the equation above, we get:

2b2 = (2c)2

2b2 = 4c2

We then divide both sides by two to obtain:

b2 = 2c2

Because b2 is the result of multiplying something by 2, we know that b2 is even. But that is only possible if b itself
is even. (2)

From (1) and (2) we conclude that both a and b are even, which means their GCD is at least 2, but our initial
assumption was that it is 1. Thus, we obtained a contradiction, so our assumption (that such a and b exist) is
false.

2b2 = a2

†Their greatest common divisor is 1.
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9.3 Proof by induction
Proofs by induction are helpful for infinite sets to prove that all elements have some property. An element having
some property simply means that a predicate P holds for that element.

Each proof consists of two parts: the base case and the induction step, each of which can be a particular type of
proof.

The base case shows that P (0) is true‡.

The induction step assumes that if P holds for a number (this is called “the inductive hypothesis”), it also holds for
its successor; in other words, it proves that: n ≥ 0, P (i) =⇒ P (i + 1).

These two proofs together help us prove a property for all numbers. The base case tells us that P (0); then the
induction step assures us that, if P (0), then P (1).

Let us prove the following property of natural numbers:

Theorem 0.3. ∀n, 0 + 1 + 2 + 3 + ... + n = n(n+1)
2

Proof. Base case:

0 = 0(0+1)
2 .

Using basic properties of arithmetic, we can reduce this to 0 = 0, which is true.

Induction step: here we assume the inductive hypothesis, that this statement is true for n:

0 + 1 + 2 + 3 + ... + n = n(n+1)
2 .

We now set to prove, using arithmetic and the inductive hypothesis, that this property is true for n + 1:

0 + 1 + 2 + 3 + ... + n + (n + 1) = (n+1)((n+1)+1)
2 .

We observe that the left-hand-side of this equation is the left-hand-side of the inductive hypothesis, plus the term
n + 1, so we can substitute it with the right-hand-side of the inductive hypothesis and rewrite it as:

n(n+1)
2 + (n + 1) = (n+1)((n+1)+1)

2 .
Which can be rewritten as:

n(n+1)+2n+2
2 = (n+1)(n+2)

2

n2+n+2n+2
2 = n2+2n+n+2

2

n2+3n+2
2 = n2+3n+2

2

‡More generally, it shows the predicate P holds for some n0; for numbers smaller than n0, the property might not hold, but these
are just a finite subset of the natural numbers.
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9.4 If-and-only-if proofs
We will often deal with statements of the form: P ⇐⇒ Q (read “P if and only if Q”), where P and Q are some
other statements.

In order to prove this, we will prove two partial statements, namely P ⇒ Q (“Q if P ”) and P ⇐ Q (“P if Q”).

The difficulty of the directions might not be the same and they might require different types of proof.

Theorem 0.4. ∀a, b ∈ N∗, gcd(a, b) = b ⇐⇒ b | a.

Proof. We have to prove two statements.

First, we prove gcd(a, b) = b ⇒ b | a.

By the definition of the greatest common divisor, gcd(a, b) = b means b divides both a and b. So b | a.

We then prove: b | a ⇒ gcd(a, b).

Then b is a divisor of both a and b. This means that gcd(a, b) ≥ b. (1)

But b > 0 so all its divisors must be strictly smaller: gcd(a, b) ≤ b. (2)

From (1) and (2), it follows that gcd(a, b) = b.

We have proved the implications in both directions and thus the equivalence.

9.5 The contrapositive
Sometimes we might have to prove a statement of the form P ⇒ Q (for example, as one half of an if-and-only-if
proof) that seems too hard to address.

We could instead try to prove the contrapositive; i.e. the statement: ¬Q ⇒ ¬P .

This approach is correct because the contrapositive is equivalent to the original statement (try to write the truth
table for both).

Theorem 0.5. ∀n ∈ N, n2 even ⇒ n even

Proof. We prove the contrapositive: n odd ⇒ n2 odd .

For n to be odd, there must be some k ∈ N s.t. n = 2k + 1.

Then n2 = (2k + 1)2 = 4k2 + 4k + 1.

This number is of the form 2k′ + 1 (with k′ = 2k2 + 2k), so it is odd.

10 References and further reading
This list of relevant mathematical topics to review for such a course was very much inspired by chapter 0 of Michael
Sipser’s “Introduction to the Theory of Computation” [1].

The rest of that textbook could serve as a useful resource for much of AA . Chapters 3-5 cover roughly the same
subjects that we will study in the first part of the course (Computability Theory), while chapter 7 covers topics
pertaining to Complexity Theory.

Chapters 1 and 2 are related to subjects that will be discussed next year at the LFA course.

Another good resource to get you started is the gigantic “Mathematics for Computer Science” [2]§. You can read
section I, chapters 1 through 5. This is, of course, optional, but if you read those chapters and solve all exercises
presented, you’ll surely have no problems with the math involved at AA.

§https://courses.csail.mit.edu/6.042/spring18/mcs.pdf
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