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The Analysis of Algorithms course aims to introduce formal frameworks in which we can explore various issues
related to computer science, in an unambiguous and rigorous manner. Having had experience programming, you
should posses some intuitive understanding of what computers are, what they can do and how well they can do it.
But, while intuition does go a long way, we assert that a formal approach is needed to complement it and provide
us with certainty about what we’re doing and how we’re doing it.

The course is structured into three distinct chapters:

1. Computability Theory is the branch of Computer Science concerned with addressing questions about what
computers are and what they can do. By now, you should be familiar with some things that computers can
do: multiply two numbers, sort a list, find the shortest path in a graph etc. Perhaps less intuitive is what
computers cannot do; in a future lecture we will present some problems that are impossible for a computer
to solve.

2. Complexity Theory. Having established precisely what computers can do, we move on to assess how effi-
ciently they can do it. In this chapter, we will address questions related to what efficiency is, what computa-
tional resources are there, how to evaluate an algorithm without getting bogged down in the details, how to
know if a solution is optimal etc.

3. Correctness. The first two chapters are somewhat constructive in nature, providing us with techniques for
building solutions to given problems. But once we have an algorithm, how can we make sure that it does
actually solve the problem that it’s supposed to? In this final chapter, we look at some methods that allow us
to obtain formal guarantees about the behavior of our code.

As one can infer from the course title, algorithms will play a central role in our discussion. But what exactly is an
algorithm?

1 Algorithms
You are most likely already familiar with some algorithms and how to represent them. For our first example,
consider this pseudocode of Euclid’s algorithm:

i n p u t s : two n a t u r a l numbers a and b
w h i l e ( a ̸= b )

i f ( a > b )
a := a − b

e l s e
b := b − a

r e t u r n a

Euclid’s repeated-subtraction algorithm

The problem at hand is finding the greatest common divisor between two natural numbers a and b. The algorithm
is a “recipe” for doing so, referring to the numbers themselves in a symbolic manner, such that if you were to set
the initial value of a to 49 and the initial value of b to 84 and follow all instructions, at the end you’d get the
answer: 7.

For now, we shall rely on the following informal definition:
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“An algorithm is a finite sequence of precise steps that can be used to solve a problem in a finite
amount of time”.

There are some key elements of this description that we need to unpack:

• “finite sequence of steps” refers to the fact that the description of the algorithm itself has to be finite. In the
example above, you can think of each “step” as being one line of the pseudocode.

• “precise steps” – while not a very precise phrase in itself, this requirement tries to match the intuition that the
following isn’t a valid algorithm for finding the GCD of two numbers:

i n p u t s : two n a t u r a l numbers a and b
r e t u r n the GCD of a and b

This is a finite sequence of steps, but it doesn’t tell us anything about how exactly we can do that, whereas
it’s very clear what each line of the previous pseudocode entails.

Or is it? Looking at the while condition, you could ask: “given two numbers a and b, how can I check if
a ̸= b?” Indeed, we could break this operation into a sequence of more basic ones: for example, if a and b
are represented as strings of digits, we first compare their lengths and if they match, we go through the pairs
of symbols at corresponding positions in the two strings – if at any point we find a mismatch, the numbers
are different, else they’re the same.

For now, we won’t dwell on the precise definition of “precise”, but having such concerns is the right attitude
in our quest to obtain a formal description of algorithms.

• a finite amount of time – obviously, for an algorithm to be useful it has to give us the answer, without making
us wait forever.

Remember that our aim is to establish a rigorous framework for computational matters so we will need to provide
a formal definition of “algorithm”, described in the language of mathematical notation.

But before we get there, we need to address a keyword that was mentioned in our informal definition: “problem”.

This is the aim of the first lecture. You will see that our definition is simple and intuitive, requiring only already-
familiar mathematical notions.

Having established what a problem is and thus what exactly we can hope to solve, in the next lecture we will
address algorithms, by introducing a formal computational model – the Turing Machine.

2 Problems
For uniformity, we shall phrase all our problems as questions. Some familiar tasks that computers solve are more
naturally expressed as imperative statements, e.g. “sort the list [43, 1, 18]!” We will rephrase such a statement as:
“what is the sorted form of the list [43, 1, 18]?”

Consider the following questions:

• Is 0 prime?

• Is 1 prime?

• Is 2 prime?

• Is 451 prime?

• etc.

We can see that much of the question structure remains the same; only one part of it – the number – changes. We
can generalize the question above as: “Is x prime?”; we call x “the input”. Thus problems are “templates” that ask
a question about some generic object. If we substitute the generic object with a concrete one, we get one problem
instance, with a particular answer.

The generic form of the sorted-list problem from above is: “What is the sorted form of the list l?”
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Each problem has one answer, which we call the output.

The meaning of a problem is such that each possible input corresponds to exactly one output. There’s a mathemat-
ical notion that fits these ideas very well: a function.

Definition 2.1. A problem is a function f : I → O from a set of inputs to a set of outputs. Although the input
and output sets can be infinite (and the input set usually is), each member of the set is finite.

We require inputs and outputs to be finite in length to match the final part of our intuitive definition: “[...] in a
finite amount of time”. If a problem statement contained an object of infinite length†, then we couldn’t ever finish
reading it, so we could not start solving it. Similarly, if the output is infinite in length, we wouldn’t ever finish
writing it, so we cannot say that we provided the answer in a finite amount of time.

Note 2.1. You might well object at this point that computers can deal with irrational numbers with infinite
decimal representations, such as π. Most of the time, though, that is not true; they only work with finite
approximations.

But computers can indeed handle actual irrational numbers. However they cannot handle random real
numbers, just a subset of the reals.

π does have finite representations, it’s just that they’re not strings of decimal digits. For example, consider
the Weierstrass definition, which is a way to finitely represent π as a mathematical formula:

π = 4
∫ 1

0

1
1 + x2 dx

This point will make more sense later; for now, you don’t need to focus on it.

2.1 Decision problems

Definition 2.2. A decision problem is a problem with a boolean answer: TRUE or FALSE.

In other words, a decision problem is a “yes” or “no” question.

Examples:

• Is this number prime?

• Is this graph fully connected?

• Can this program ever trigger a SEGFAULT?

During our future discussions on Computability, Complexity and Correctness, we will focus almost exclusively on
decision problems. This is because decision problems have the simplest possible answer structure, which will make
our analyses succinct.

Obviously, there are many relevant problems in the real world which are not decision problems. We will later see
how what we learn about decision problems can be adapted to other types.

2.2 Function problems
Function problems are basically everything else, i.e. problems whose answer is a mathematical object, other than
a boolean.

For example:

• What are the prime factors of n?

• What is b to the power of e?

• What is the largest element in list l?
†There are areas that explore the notion of infinite-length input, but they are well outside the scope of AA . The key term is “type

2 computability theory”.
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Note 2.2. Our classification of problems is not exhaustive. For example, there are practically useful problems
for which multiple correct answers are possible and thus cannot be modelled as functions. Consider the question
“What is one prime factor of 12?” Both 2 and 3 are valid answers.

There are other possible models for problems (in particular, the one above is an example of a search problem,
which can be modeled as a binary relation), but they are outside the scope of AA .

For simplicity, we shall limit ourselves to only those kinds of problems that fit Definition 2. Most of the
time, we’ll discuss decision problems specifically.

Our definitions are too inexact – they don’t say much about either the domain or the codomain of functions.

Some problems concern numbers, some concern lists, other concern graphs. These are vastly different objects; we
would like a common way of representing all of them, so that we can have a more precise view on how our inputs
(and outputs) look like.

In search of a common representation, we will now take a short detour through the field of formal languages. The
concepts presented in the following section will be studied in more detail at the LFA course in the third year.

3 Alphabets and strings

Definition 3.1. An alphabet is a non-empty, finite set whose members we call “symbols”.

In Computer Science, the term “alphabet” is used by analogy with natural language alphabets, such as the Latin
Alphabet, the Cyrillic Alphabet etc.

However, alphabets are just sets; they’re not some fancier mathematical object, but just a convention that makes
things easier to interpret in some contexts.

Alphabets are usually denoted by a capital sigma, Σ; here are some examples:

Σ1 = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}
Σ2 = {0, 1}

Σ3 = {□, △, ◦}

Definition 3.2. A string over alphabet Σ is a finite sequence of symbols from Σ.

For brevity, whenever we are talking about strings, we will not write them down as (a0, a1, a2, ..., an), but we’ll just
join all the component symbols together: a0a1a2...an.

Example strings:

s1 = algorithms

s2 = 1001110
s3 = □□△□ ◦ △

(Usually we will not explicitly state the alphabet from which a string’s symbols are drawn, as it will be clear from
the context).

The string of length 0, consisting of no symbols is called “the empty string” and is denoted by ε‡.

Definition 3.3. Let Σ be an alphabet. Then Σ∗ is the set of all possible strings over Σ.

Note that this includes the empty string, ε.

For Σ1 = {a, b, c}:

Σ∗
1 = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, ...}

For Σ2 = {□, △}:

‡We’ll avoid confusion between the empty string and a normal symbol by never using Greek Letters in our alphabets.
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Σ∗
2 = {ε,□, △,□□,□△, △□, △△,□□□,□□△, ...}

Note that, while Σ∗ itself is infinite, each of its members is finite.

4 Representing objects with strings
Any finite object can be represented as a string of symbols. This may be somewhat obscured by how we use
pen-and-paper to create complex 2D combinations of symbols, but a structure like:

n∏
i=1

√
a2

i

bi

can easily be converted to a string like “Π(i = 1; n)(√((a_iˆ2)/(b_i)))”.

5 Conclusion
From now on, we shall consider only the string representation of inputs; the alphabet will be chosen to suit our
needs, on a per-case basis. But we shall see, in a future lecture, that the binary alphabet Σ = {0, 1} is sufficient for
all our purposes.

We can now say that a problem is a function from strings to outputs:

f : Σ∗ → O
For decision problems, because there are only two outputs (FALSE and TRUE), we shall treat them in a special way.

So we can revisit Definition 2.1 and say that a decision problem is a function from strings to {FALSE, TRUE}:

f : Σ∗ → {FALSE, TRUE}
For functional problems, because outputs are arbitrary objects, we can also talk instead about their string encoding.
So we can say a function problem is a function from strings to strings.

f : Σ∗
1 → Σ∗

2
Note that the input alphabet can differ from the output alphabet; most of the time, we’ll consider them the same.
Most of the time, we’ll consider them to be Σb = {0, 1}.
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