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In the introductory lecture, we discussed what “problems” are and classified them into two classes:

• “decision problems” – those which admit a “yes” or “no” answer

• “function problems” – those whose answer is some mathematical object other than a boolean, such as a
number, a set, a graph etc.

In the second lecture, we introduced the concept of Turing Machines and presented some particular examples of
machines that solve problems. The answer to a decision problem was given by transitioning to one of the final
states Y (a “yes” answer) or N (a “no” answer), while the answer to a function problem was given by encoding
the answer in the tape contents and transitioning to the final state H.

In all cases mentioned above, the computation ends by reaching a final state. But consider the following machine:

0 1 □
q1 q1, 0,− q1, 1,− q1,□,−

The machine starts in the initial state q1. Regardless of what symbol it reads, it remains in the same state, keeping
the head stationary. Its computation will never end: it can never reach any of the three final states.

This should evoke the more familiar concept of while (1) {} from a language like C. The machine performs
work: it goes through successive discrete stages, each time transitioning to a state, writing a symbol on the tape
and moving the tape head. It just so happens that the next state is always the same as the current one, the written
symbol is always the same as the read one and the movement direction of the head is to keep it stationary, so there
is no interesting effect for any transition.

However, if the machine above seems too odd, here’s one that moves the head and changes the contents of the
tape:

0 1 □
q1 q1, 1,→ q1, 1,→ q1, 1,→

Regardless of the input, the machine will go on forever, writing one more 1 on the tape at each step. By analogy
with C, you can think of it as: while (1) { putchar("1"); }.

Here is one more example of a machine that goes on forever, but also changes state:

0 1 □
q1 q1, 1,→ q1, 0,→ q2,□,←
q2 q2, 1,← q2, 0,← q1,□,→

This machine keeps going left-to-right, then right-to-left through the input, flipping symbols.

The three examples above always run forever, regardless of the input. But we can easily conceive of a machine
that halts for some inputs and doesn’t for others:

0 1 □
q1 q1, 0, H q2, 1,→ q2, 1,→
q2 q2, 1,→ q2, 1,→ q2, 1,→
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This one halts in one transition for any input that begins with a 0, or goes on to write a never-ending sequence of
1s for any input that begins with 1, as well as for the empty input.

The key takeaway here is that, during its run, a machine can either make a finite number of transitions until it
reaches a final state, or make an infinite number of transitions, never reaching a final state. In the first case, we
say that the machine “halts”, in the other that it “doesn’t halt”.

We will now formalize the notion of a machine’s “run”.

1 Well-behaved machines and tape contents
To keep our definitions short and sweet, we will adopt the following convention: a Turing machine will always
maintain the contents of the tape as a string of non-blank symbols surrounded on both sides by infinite sequences of
blanks.

This means that a machine isn’t allowed to overwrite any non-blank symbol with a blank; except for the first and
last symbols.

A machine is also not allowed to “leave a gap”: go over some blanks to the left or to the right of the content string,
then insert a non-blank symbol there.

Finally, because of the above restrictions, there is no point to advance more than one blank symbol in any direction:
if a Turing machine moves left onto a blank symbol, it can then only move back right, or stay and keep transitioning
until it overwrites the blank symbol with a non-blank symbol (similarly for moving right onto a blank symbol).

We will use the term “tape contents” for the contiguous non-blank portion of the tape.

A well-behaved machine cannot end its computation on a blank symbol, if there are any tape contents; only if the
entire tape is filled with blanks. This will simplify a later definition about what it means to compute an output.

From now on, we shall discuss only such “well-behaved” machines.

2 Turing Machine configurations
At any given step of computation, the following is true:

• the tape contains a finite string of non-blank cells

• the head is scanning exactly one cell

• the machine is in some state q

These three elements together (tape contents, head position, state) uniquely characterize a computation step –
together, they form a “configuration”.

Definition 3.1. A configuration of a Turing Machine M = (Q, Σ, Γ, B, q1, δ) is a triplet (γL, γR, q) where:

• γL is a string of non-blank symbols (γL ∈ Γ′∗) with the contents of the tape, to the left of the head.
The string is empty if there are no non-blank symbols to the left of the head. For example, this is how
all machines start.
Note that the character currently read by the head is not part of this string.

• γR is a string of symbols (γR ∈ Γ∗) with the contents of the tape, to the right of the head.
All the symbols of γR, except for the first one, are non-blank. The first symbol is a blank only in the
following two situations:

– the head of the machine is currently one position left of the tape contents

– the head of the machine is currently one position right of the tape contents; in this case γR = B

Note that the character currently read by the head is part of this string.

• q ∈ Q′ is the current state.
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2.1 Configuration types

Definition 3.2. The initial configuration of a Turing machine M = (Q, Σ, Γ, B, q1, δ) on input w ∈ Σ∗ is:

• (ε, w, q1), for w ̸= ε

• (ε, B, q1), for w = ε

We shall call it CM
0 (w).

Definition 3.3. A halting configuration of Turing machine M = (Q, Σ, Γ, B, q1, δ) on input w ∈ Σ∗ is (ϕ, µ, qf ),
where ϕ ∈ Γ′∗, µ ∈ Γ∗, qf ∈ {Y, N, H}.
Specifically, an accepting configuration is one where qf = Y and a rejecting configuration is one where qf = N .

2.2 Configurations example
Recall the machine isEven from the previous lecture and let’s consider its run over input 10010.

The first configuration, at the very beginning, before doing any computational step is:

(ε, 10010, q1)
The third element of the tuple tells us that the machine is in state q1. There are no symbols to the left of the head,
hence the first element of the tuple is just the empty string, ε. The whole input is to the right of the head, except
for the first symbol which is right under it. To figure out the symbol currently read by the head, we need to inspect
the first symbol of the second element of the tuple; here, it is 1.

Looking at the transition table of isEven, we know that δ(q1, 1) = (q1, 1,→). So the next configuration is:

(1, 0010, q1)
The state is still q1, but the head moved one position right, so the first 1 symbol of the input is now to the left of
the head, which is positioned over a 0.

The machine then goes through the following configurations, until it transitions into a halting state.

(10, 010, q1)
(100, 10, q1)
(1001, 0, q1)

(10010,□, q1)
(1001, 0, q2)
(1001, 0, Y )
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3 Going from one configuration to another

Definition 3.4. Let M = (Q, Σ, Γ, B, q1, δ) be a Turing Machine.
We say that C ⊢M C ′ (read “from configuration C, machine M goes to configuration C ′ in one step”) if,

in a single transition, the machine goes from configuration C to configuration C ′.
Depending on the transition function δ, the following situations are possible (for ease of reading, we shall use

bolded Latin letters, like p to represent states, monospaced Latin letters from the beginning of the alphabet,
like a, to represent tape symbols and Greek letters to represent strings of tape symbols):

1. δ(p, a) = (q, b,−):

1.1. (ϕ, aµ, p) ⊢M (ϕ, bµ, q)

2. δ(p, a) = (q, b,→):

2.1. (ϕ, acµ, p) ⊢M (ϕb, cµ, q)

2.2. (ϕ, a, p) ⊢M (ϕb,□, q)

3. δ(p, a) = (q, b,←):

3.1. (ϕc, aµ, p) ⊢M (ϕ, cbµ, q)

3.2. (ε, aµ, p) ⊢M (ε,□bµ, q)

Where:

• ϕ, µ ∈ Γ′∗ (possibly-empty strings of non-blank tape symbols)

• a, b, c ∈ Γ

• q, s ∈ Q

We abuse notation here and use a specialized version of concatenation where concatenating a blank to the
end of the empty string results in the empty string: ε□ = ε.

Combined with our specification of “well-behaved machines”, this convention keeps our rules succinct (con-
sider the specifications for the transitions that move the head right).

Remember that our machines are well-behaved and never advance more than one blank symbol outside the bounds
of the tape contents.

3.1 Zero or more steps
We now define the operator ⊢∗

M to be the reflexive and transitive closure of ⊢M . This means that we extend this
operator to yield a configuration “in 0 or more steps”, exhibiting the two properties:

• reflexivity: For any configuration C: C ⊢∗
M C

• transitivity: For any configurations C1, C2, C3: (C1 ⊢∗
M C2) ∧ (C2 ⊢∗

M C3) =⇒ C1 ⊢∗
M C3

We now give formal definitions for “the result” of running a machine M on an input w.

4 How Turing Machines run
In all definitions in this section:

• M is a Turing Machine (Q, Σ, Γ, B, q1, δ)

• w, v ∈ Σ∗

• ϕ ∈ Γ′∗

• µ ∈ Γ∗ (only its first symbol may be a B)

Definition 3.5. M [w]→ TRUE
def= CM

0 (w) ⊢∗
M (ϕ, µ, Y )

4



Analiza Algoritmilor Computing

Read this as: “M accepts input w”.

Note 3.1. In many Computability textbooks, you may see this denoted by M(w) = TRUE, but we want to
emphasize here that M is not a function that maps w to a value, but a machine that performs computation
starting from w.

Definition 3.6. M [w]→ FALSE
def= CM

0 (w) ⊢∗
M (ϕ, µ, N)

Read this as: “M rejects input w”.

Definition 3.7. M [w]→ v
def= CM

0 (w) ⊢∗
M (ϕ, µ, H) and:

• ϕµ = v, if v ̸= ε

• ϕ = ε, µ = B, if v = ε

Read this as: “on input w, M computes the output v”.

This definition tells us that M computes a string v, if it eventually transitions into state H with the tape contents
(from the first non-blank, to the last non-blank) consisting of that string.

Remember that a well-behaved machine cannot end its computation on a blank symbol, unless the tape is com-
pletely blank. The second bullet covers that case.

Definition 3.8. M [w] halts def= M [w]→ X ∨
M [w]→ TRUE ∨
M [w]→ FALSE

where X ∈ Γ′∗

This is a generalization of the previous three definitions. If, on input w, M accepts or rejects or computes an output
v, we can say generically that “M halts on input w”. Otherwise we say that “M doesn’t halt on input w”.

Going forwards, it will be useful for us to have a short notation for this case:

Definition 3.9. M [w]→⊥def= M [w] doesn’t halt

(The symbol ⊥ is called a “bottom” and its usage here is a bastardization of its meaning in Type Theory.)

5 Accepting a problem

Definition 3.10. Let f : Σ∗ → {FALSE, TRUE} be a decision problem and M = (Q, Σ, Γ, B, q1, δ) a Turing
Machine:

M accepts f
def= ∀w ∈ Σ∗, f(w) = TRUE ⇔M [w]→ TRUE

Note that the definition doesn’t say anything about the case in which f(w) = FALSE. The machine could
transition to final state N , or H, or it could loop forever, it doesn’t matter.

Definition 3.11. f is acceptable def= ∃M s.t. M accepts f

We can now define our first important set of decision problems:

Definition 3.12. RE
def= {f | f is acceptable }

The name “RE” stands for “recursively-enumerable”, which is another term for “acceptable”. We use it here
(instead of something like A) because it’s the classical name for this set.
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6 Deciding a problem

Definition 3.13. Let f : Σ∗ → {FALSE, TRUE} be a decision problem and M = (Q, Σ, Γ, B, q1, δ) a Turing
Machine:

M decides f
def= ∀w ∈ Σ∗, (f(w) = TRUE ⇔M [w]→ TRUE) ∧ (f(w) = FALSE ⇔M [w]→ FALSE)

Definition 3.14. f is decidable def= ∃M s.t. M decides f

Note that for a problem to be decidable, there has to exist a Turing machine M which always halts and gives the
correct answer, whatever the input. M matches our intuition of what a “decision algorithm” is: a finite mechanistic
procedure that always provide an answer to a yes/no question, in a finite amount of time.

Definition 3.15. R
def= {f | f is decidable }

The name “R” stands for “recursive”, which is another term for “decidable”. Like RE, it’s a classic name.

At this point in the lecture, the concept of acceptance might seem artificial and meaningless. But we shall soon
prove (and provide examples) that there are decision problems for which there exist machines that can accept them
but there exist no machines that can decide them. Thus, acceptance is a notion worthy of study.

What’s more, we will also prove (and provide examples) that there are decision problems which are not acceptable:
no Turing Machine exists that can accept them.

7 Computing a problem
We move on from decision problems for a bit, and generalize the concept of “deciding”.

Definition 3.16. Let f : Σ∗
1 → Σ∗

2 be a function problem and M = (Q, Σ1, Γ, B, q1, δ) a Turing Machine:
M computes f

def= ∀w ∈ Σ∗
1, M [w]→ f(w)

Definition 3.17. f is computable def= ∃M s.t. M computes f

Note that, per our definitions, decidability is a special case of computability, applicable only to decision problems.

Similarly to what we said about acceptable and decidable problems, we will soon prove that there are some
function problems that are not computable.

Note 3.2. From now on, when talking generically about functions, we will use the informal term “solve” to
mean either “accept”, “decide” or “compute”, appropriately, based on context.

8 The Church-Turing thesis
We now formulate a very important (and possibly non-intuitive) claim that is essential to the relevance of our
approach to Computability Theory: the Church-Turing thesis. One possible formulation of the thesis is:

“The problems that are solvable by a mathematician with pen and paper are precisely those
computable by a Turing Machine.”

We can rephrase it in a way more relevant to our goals:

“The problems that are solvable by an algorithm are those that are computable by a Turing
Machine.”
This is a philosophical statement about reality, that asserts a correspondence between the intuitive concept of
“algorithm” and the formal concept of “Turing machine”. Because “algorithm” (or “solvable by an algorithm”) is
not a formally defined mathematical object, the Church-Turing thesis is not a mathematical statement; thus it can
be neither proven or disproven within the realm of mathematics.
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However, it can be analyzed, debated, doubted, accepted etc. At this point, you might find little reason to believe
this assertion that Turing Machine can solve any problem solvable by an algorithm, but there are some solid
arguments in support of it.

8.1 Reasons to believe
8.1.1 Different approaches, same result

At the beginning of the twentieth century, what algorithms are and what can actually be solved with an algorithm
became an important subject. This led to the idea of an “effective method”, a recipe of steps to carry out a problem.
The characteristic of an effective method are:

• It consists of a finite number of instructions, each expressible with a finite amount of symbols.

• When carried out, it will produce a result in a finite number of steps.

• It can be carried out by a human with just pencil and paper.

• It demands no insight, intuition or ingenuity.

A problem that can be solved by an effective method is “effectively calculable”. Note that this is an intuitive,
informal concept.

There are at least three contemporaneous attempts at formalizing this notion:

• recursive functions

• the Lambda calculus

• Turing Machines

These three widely different models all started as an attempt to rigorously capture which problems are “effectively
calculable”. They were all shown to be equivalent to each other; that is, they identify precisely the same set of
problems.

Since then, many other models of computations (e.g. counter machines, RAM machines, Markov algorithms) were
designed for which it was proven that the set of problems computable in that model is R.

8.1.2 No known counterexamples

One way to reject the hypothesis would be to provide a counterexample of a problem that can be solved algorith-
mically, but for which no Turing Machine that decides it exists.

The examples from the previous lecture, as well as the exercises in the first lab, should convince you that there’s
quite a wide range of problems that these machines can decide. The literature on computability theory is filled
with countless other examples of Turing Machines deciding various functions, as well as methods for proving that
a Turing Machine which decides a function exists (i.e. even without explicitly presenting such a machine). †

9 References and further reading
The “recursive functions” mentioned in subsubsection 8.1.1 were formulated by Kurt Gödel (1906-1978) during
a series of lectures at Princeton. The lecture notes can be found, for example, in “Kurt Gödel: Collected Works:
Volume I: Publications 1929-1936” [1].

The Lambda calculus was developed by Alonzo Church (1903-1995) and his students. In his 1936 paper “An
Unsolvable Problem of Elementary Number Theory” [2], Church set out to formalize the notion of “effective-
calculability” and prove the existence of undecidable problems. He also showed the equivalence between lambda
calculus and Gödel’s recursive functions.

†There is a branch of Computability Theory that deals with “hypercomputation” – computational models which can compute
functions that Turing Machines cannot. However, while the models and results are mathematically sound, the computation they
describe could not be carried out by a human with pen and paper. For example, some models require performing an infinite number
of steps in a finite amount of time.
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Alan Turing described his machines in 1936, in “On computable numbers, with an application to the Entschei-
dungsproblem” [3] (which was only published in 1937). Because Church’s paper had been published one year
before, Turing added an appendix to his own, proving the equivalence between lambda-definable functions and
Turing-computable functions.

The Stanford Encyclopedia of Philosophy has an entry on the Church-Turing thesis [4]: its historical context, what
it claims and what it doesn’t, as well as a more detailed section on why to accept it. ‡
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