
18. AMORTIZED ANALYSIS
Alexandra UDRESCU, Mihai-Valentin DUMITRU

alexandra.udrescu01@upb.ro, mihai.dumitru2201@upb.ro

December 2024

In some cases, especially when dealing with data structures, we might want to analyze the complexity of a sequence
of n operations; this sequence can even be heterogeneous, involving different types of operations, with different
asymptotic complexities.

Our motivating example is a dynamic array which allows arbitrary amounts of insertions and deletions. The
maximum number of elements is not known in advance, so the array should allow for resizing: when the array
is filled, a new, larger array is allocated, all elements from the old array are copied to the new one, then the new
element is inserted. Deletions are also arbitrary and might occur at any point. If we want to be memory-efficient
and not waste space on a barely-populated array, it should also be able to shrink: when it gets too few elements, a
new, smaller array is allocated, all elements from the old array are copied to the new one, except for the deleted
element.

We will first consider a sequence of insertions, no deletions. An array A has two relevant measurements:

1. size(A): the capacity of the array – the maximum number of elements it can store.

2. elems(A): the number of elements currently in the array.

For simplicity, let’s assume that initially size(A) = 1 and elems(A) = 0.

1 Naive resizing
Let us do a naive implementation first: we have an array in which we add elements, until it fills up. When full, in
order to insert another element, we create a new array of size(A) + 1 and copy the old array’s elements in the new
one, then we insert the new item:

Algorithm 18.1 Naive array resizing
1: function insert(A, new_item)
2: if elems(A) = size(A) then
3: new_array← new array of size size(A) + 1
4: for i← 1 to elems(A) do
5: new_array[i]← A[i]

6: new_array[elems(A) + 1]← new_item

7: free A

8: return new_array

For the first insertion, we skip the then branch and directly insert into the array, but for all subsequent insertions,
we will need to copy all the previously inserted elements into a new, larger array. For n inserts, we will need to
copy 0 + 1 + 2 + 3 + ... + (n − 1) = n(n−1)

2 elements in total. A sequence of n insertions thus have a total cost of
Θ(n2). Can we do better?

2 Doubling the size
The problem with the naive approach is that we end up resizing the array for every insertion, thus incurring a
great cost for copying existing elements. Intuitively, we should allow the new array to have much more free space,

1



Analiza Algoritmilor Amortized Analysis

Figure 1: Insertion times for dynamic array

in order to resize less often: if instead we allocated an array with two extra slots, then we would need to copy
elements only half as often as before; however, this is still asymptotically the same as the +1 approach.

When the array is full, we will allocate a new array with double the size of the old one.

Algorithm 18.2 Doubling the array when resizing
1: function insert(A, new_item)
2: if elems(A) = size(A) then
3: new_array← new array of size 2 · size(A)
4: for i← 1 to elems(A) do
5: new_array[i]← A[i]

6: new_array[elems(A) + 1]← new_item

7: free A

8: return new_array

By doing this, we improve the asymptotic complexity of our sequence of n insertions to Θ(n). The crux of the
“trick” is that most insertion operations are cheap, taking constant time; only once in a while will we get an
expensive insertion that requires linear time. Using the doubling strategy, we ensure that this costly operations
come so rarely, that their cost is amortized over all the cheap operations. In other words, we can consider each
insertion to have an amortized cost that is constant.

Next we shall formally prove this complexity, by introducing three popular, alternative methods for performing
amortized analysis on sequences of data structure operations: the aggregate method, the accounting method, and
the potential method.

3 The Aggregate Method
Aggregate analysis computes the worst-case time complexity of an entire sequence, rather than only one operation.
As such, given a sequence of n with T (n) worst-case total time, each operation is considered to have an amortized
time cost of T (n)/n.

Let S be a sequence of n insert operations op1, op2, ..., opn performed on an array. We will examine the aggregate

2



Analiza Algoritmilor Amortized Analysis

Figure 2: Array - before and after doubling its size

costs associated with these operations, specifically distinguishing between the actual insertion and the cost of
copying elements when the array needs to be resized. This analysis is demonstrated in the following table 1, which
outlines the costs for a sequence of 9 operations:

Total cost Copying cost Insertion cost
Operation 1 1 0 1
Operation 2 2 1 1
Operation 3 3 2 1
Operation 4 1 0 1
Operation 5 5 4 1
Operation 6 1 0 1
Operation 7 1 0 1
Operation 8 1 0 1
Operation 9 9 8 1

Table 1: Costs of insert operations in a dynamic array

We can define the cost of sequence S as:

cost(S) = costinsert(S) + costcopy(S)

In this formula, the costinsert(S) is always equal to n, the number of operations in the sequence. The difficulty
comes from computing costcopy(S).

To determine copycost(S), we note that if k denotes the number of copy operations required following n insert
operations, then: 2k−1 < n ≤ 2k ⇒ k = ⌈log2(n)⌉. This idea is visually presented in Figure 2.

Considering all these, the cost of the sequence S becomes:

cost(S) = n +
⌈log(n)⌉−1∑

i=1
2i ≤ n +

log(n)∑
i=1

2i = 3n− 1

As such, the amortized cost of an insert operation becomes:

cost(opi) = cost(S)
n

= Θ(n)
n

= Θ(1)

4 The Accounting Method
The accounting method, also known as the banker’s method, assigns a constant cost to each operation to represent
its average execution time. Certain operations are priced below their actual cost, creating a reserve of funds, or
credit. The credit accrued from the less expensive operations is then used to subsidize the more costly ones that
arise later on. The base idea is to determine an uniform amortized cost, the same for each operation, such that the
surplus left after inexpensive operations is then allocated to offset the cost of more expensive operations that may
occur later on in the sequence. It is important to note that an expensive operation cannot consume more than the
credit already available from previous operations.

3



Analiza Algoritmilor Amortized Analysis

Figure 3: Accounting Method credit example

For an insert operation, we associate an amortized cost ĉ such that:

n∑
i=1

ci ≤
n∑

i=1
ĉi

(where ci is the real cost of opi).

The initial phase involves determining the amortized cost per operation. Given a half-full list (of size 2k, but with
2k−1 elements), which was just resized to double its previous size, we can carry out up to 2k−1 insertions before
a resize operation is necessary again. When it’s time to resize the list again and insert the (2k−1 + 1)-th element,
we must replicate the entire existing list — both the elements that were already in place prior to the sequence of
insertions, as well as the elements added by the sequence. As such, when adding 2k−1 elements, when the list
becomes full, we will have to copy 2k elements. Consequently, each insertion operation should account for:

• adding the current element.

• making a future copy of the element that was just inserted.

• making a future copy of an already existing element.

As such, we can assume that an insert operation has amortized cost ĉ = 3.

Let us look at an example of how crediting works in the accounting method. Figure 3 presents the values of the
credit when performing a sequence of 3 insertion operations in a half-full list of size 4.

At operation i + 1, the credit can be computed as:

crediti+1 = crediti + ĉ− ci

Subsequently, we need to confirm that the amortized cost is sufficient to cover the actual cost of a sequence of
operations.

n∑
i=1

ci ≤
n∑

i=1
ĉ⇒

n∑
i=1

ci ≤ 3n

From our earlier aggregate analysis, we have established that cost(S) =
∑n

i=1 ci = 3n − 1. Therefore, it is
appropriate to conclude that the amortized cost per insertion is indeed 3.

5 The Potential Method
The potential method is akin to the accounting method, but rather than allocating amortized costs, it defines
a potential function that tracks the variations in the data structure’s credit reserve. As such, cheap operations
make the potential grow, while expensive operations consume the accumulated potential of the data-structure. At
any given moment in time, the potential difference between the initial state and any subsequent state of a data
structure must be non-negative.

We define a potential function Φ : State→ N that represents the potential function defined on the states of a data
structure.

4



Analiza Algoritmilor Amortized Analysis

Let h0 be the initial state of the data structure. Then the potential function Φ at this initial state is Φ(h0) = 0.
Furthermore, for any state ht of the data structure occurring during the course of the computation, the potential
function Φ is non-negative, that is, Φ(ht) ≥ 0 for all such states ht.

The potential function serves as a mechanism to monitor the accumulated “precharged time” at any given moment
in the computation. Essentially, it quantifies the reservoir of “saved-up time” that can be utilized to offset the
cost of time-intensive operations. This concept is similar to maintaining a bank balance in the banker’s method of
accounting. A key characteristic of the potential function is its dependence solely on the current state of the data
structure. This means that the function’s value is independent of the computation’s historical path that led to the
current state.

Using the potential function, the amortized cost for opi can be calculated using the formula: ĉi = ci + Φ(hi) −
Φ(hi−1), where notations remain the same as in the previous sections.

For our implementation, we need the potential to be maximum right before doubling, when the size is equal to
the number of elements to be copied. Then, it should be 0 after doubling the size and copying the elements in the
new array. The non-expensive insert operations would grow the potential by 2, so that they can account for a later
copy of an already-existing element and the element added. As such, we can define the potential function as:

Φ(A0) = 0 (1)
Φ(Ai) = 2 · elems(Ai)− size(Ai) (2)

From the way we wrote the implementation, the number of elements in the list is always bigger than half of its
size. This means that the chosen potential function yields non-negative values for any state of the array.

Furthermore, in order to find out the amortized cost ĉ we define the following situations.

1. Insertion does not double the array: size(Ai) = size(Ai−1)
Here, the cost of an insertion is ci = 1 + size(Ai−1).

ĉi = ci + Φ(Ai)− Φ(Ai−1) (3)
= ci + (2 · elems(Ai)− size(Ai))− (2 · elems(Ai−1)− size(Li−1)) (4)
= ci + 2(elems(Ai)− elems(Ai−1)) (5)
= ci + 2 (6)
= 1 + 2 (7)
= 3 (8)

2. Insertion doubles the array: size(Ai) = 2 · size(Ai−1). Here, the cost of an insert is ci = 1.

ĉi = ci + Φ(Ai)− Φ(Ai−1) (9)
= ci + (2 · elems(Ai)− size(Ai))− (2 · elems(Ai−1)− size(Li−1)) (10)
= ci + 2(elems(Ai)− elems(Ai−1)) + (size(Ai−1)− size(Ai)) (11)
= (1 + size(Ai−1)) + 2− size(Li−1) (12)
= 3 (13)

6 Amortized deletion
Let us now consider a sequence of both insertion and deletion operations. The naive solution is try to do the
“reverse” of our resizing strategy: when the array gets more than half empty (elems(A) = size(A)

2 ), we allocate a
new one that is half its size and copy all the elements except the deleted one.

However, think about a sequence that contains sufficient insertions to trigger the doubling resizing, followed by a
string of alternating deletions and insertions: the array will be resized (and the elements copied to a new copy)
for each operation!

The correct solution is to allow the array to get even more depleted than just “half empty”.

5



Analiza Algoritmilor Amortized Analysis

Think about the accounting method: each “normal” insertion brought enough credit for the insertion itself, as well
as the future copying of the inserted element and the future copying of another, already-present element.

Similarly, we want to allow “normal” deletions to bring enough credit for the deletion itself, as well as the future
copying of an element from the first half of the array. This should also happen right after the array size doubling
was triggered; so we need to allow half of the elements to be “normally” deleted, without triggering any copies.
We can do this by resizing the array when it gets less than a quarter full (elems(A) = size(A)

4 ).

7 References and further reading
The content of these notes was adapted from “Introduction to Algorithms”, fourth edition, chapter 16[1].

Bibliography
[1] Thomas H Cormen et al. Introduction to algorithms. 4th. MIT press, 2022. Chap. 16, pp. 448–475.

6


	Naive resizing
	Doubling the size
	The Aggregate Method
	The Accounting Method
	The Potential Method
	Amortized deletion
	References and further reading

