
19. ALGEBRAIC DATA TYPES
Mihai-Valentin DUMITRU

mihai.dumitru2201@upb.ro

January 2025

In programming, types are a useful instrument for obtaining correctness guarantees and ensuring robustness.

In this lecture, we will study the concept of Algebraic Data Types; the term “algebraic” comes from the fact that
the constructors of these types form an algebra. We won’t concern ourselves much with this aspect; for us, ADTs
are just types with one or more constructors, each constructor having zero or more arguments.

Instead of discussing abstractly about how these types look in general, let’s dive directly into a very common
example, lists.

1 The “List” ADT
The List ADT has two constructors, which capture the idea that a list is either empty, or consists of some element
added to another list:

Empty : List
Cons : N × List → List

Empty is a nullary constructor (no arguments), and Cons is a binary constructor (two arguments).

The list consisting of the numbers 1, 2, 3, in this order can be expressed as:

Cons (1 , Cons (2 , Cons (3 , Empty)))

It might help to read it from the right. First we have the empty list, which contains no elements.

Then, Cons(3, Empty) is the list consisting of the element 3 added to the empty list.

Then, Cons(2, Cons(3, Empty)) is the list consisting of the element 2 followed by the list above.

Lastly, Cons(1, Cons(2, Cons(3, Empty))) is the list consisting of the element 1, followed by the list above.

Note 19.1. The expression above is a well-formed mathematical object. The fact that it refers to the list [1,
2, 3] is an interpretation and it is somewhat arbitrary. We could just as well claim that it refers to the list [3,
2, 1], as long as we’re consistent with this interpretation and modify our subsequent definitions accordingly.

Now that we have defined a data type, we can introduce operators. “Operator” is just a fancy name for a function;
it has a domain, a codomain and a definition. The definition of the operators is grouped in one or more axioms.
Our first operator, isEmpty ranges over lists, mapping them to a boolean value which shows whether they are the
empty list or not.

i sEmpty : List → {F ALSE, T RUE}

(IE1) isEmpty(Empty) = T rue
(IE2) isEmpty(Cons(x, xs)) = F alse

The first line tells us the name, the domain and the codomain of our operator.

Next, we have the two defining axioms. We choose to name these axioms “IE1” and “IE2”. These names will comes
in handy when writing proofs, as we will need to refer to the axioms. We will get to the that in the next lecture,
when we will study structural induction.

1

Analiza Algoritmilor Algebraic Data Types

The first axiom, IE1, tells us that the list Empty is empty. The second axiom, IE2, tells us that some list consisting
of an element x added to a list xs† is not empty.

Who are x and xs in the last axiom? Well, x is some element, a member of E and xs is some list, a member of
List; that’s all that is relevant. The operator isEmpty is not concerned with the particular elements of a list, just
with the overall “structure” of he list. Thus, you should view axiom IE2, as being preceded by: ∀x ∈ E, ∀xs ∈ List.
We will usually omit such quantifiers, for brevity.

At this point, you might well doubt the usefulness of operator isEmpty. The implicit usefulness, relating to pro-
gramming, would be to offer the programmer a way to check whether some arbitrary list l is empty or not. Couldn’t
a programmer just check if l = Empty?

Well, what does “=” mean here? What does it mean for two lists to be equal? You might have an intuition about
this and you might even deem it obvious, but the important fact is that we have not defined what equality is. All
we have is a data type. An equality test should come in the form of an explicitly defined operator:

l i s t E q u a l : List × List → {F ALSE, T RUE}

(EQ1) listEqual(Empty, l) = isEmpty(l)
(EQ2) listEqual(l, Empty) = isEmpty(l)
(EQ3) listEqual(Const(x, xs), Cons(y, ys)) = (x = y ∧ listEqual(xs, ys))

The first two axioms, EQ1 and EQ2, regard the equality between the empty list and an arbitrary list l (again, you
can think of this axiom as being preceded by a ∀l ∈ List). It hinges on the definition of isEmpty.

The third axiom, EQ3, concerns the equality between two non-empty lists, whose heads are x and y and whose
tails are xs and ys, respectively. These two lists are equal only if they have the same first element and their tails
are equal. Notice that we compare the heads using the operator “=”; here, this has the meaning of the ordinary
equality comparison on natural numbers, with which we’re familiar. What’s interesting is the second operand of
the logical and: here we compare the tails of the lists using the very operator that we’re defining! This makes the
definition of our listEqual recursive. Recursive definitions are very common for lists, and for ADTs in general.

Here’s another example, of an operator that maps a list to its length:

l e n g t h : List → N

(LEN1) length(Empty) = 0
(LEN2) length(Cons(x, xs)) = 1 + length(xs)

The first axiom, LEN1, tells us that the empty list has no elements. The second one is more exciting: it tells us that
the length of a list with head x and tail xs is one more than the length of the tail, using the very operator that
we’re defining!

To append a list to another:

append : List × List → List

(APP1) append(Empty, l) = l
(APP1) append(Cons(x, xs), l) = Cons(x, append(xs, l))

For example, given lists [1, 2, 3] and [4, 5, 6], the result of appending the second to the first is [1, 2, 3, 4, 5, 6] (try
working out “step by step”, based on the two axioms)

2 Booleans
In the previous section we’ve used the boolean values FALSE and TRUE; but we can also treat these as two nullary
constructors of a new ADT:

F a l s e : Bool
True : Bool

†The separation of a list into two parts with names like x and xs, or y and ys, is a common idiom. The name xs is is actually the
English plural of x, and should be read as “/exes/”.

2

Analiza Algoritmilor Algebraic Data Types

We can then define familiar operators:

and : Bool × Bool → Bool

(AND1) and(F alse, F alse) = F alse
(AND1) and(F alse, T rue) = F alse
(AND1) and(T rue, F alse) = F alse
(AND1) and(T rue, T rue) = T rue

3 Tuples
A tuple is an n-ary collection of elements. The difference between a list and a tuple is that, while all lists are values
of the same ADT, tuples are a family, with a separate data type for each n.

For example, for n = 2, we call such tuples “pairs”. A pair

P : N × N → P air

P is our first example of an external constructor; i.e. a non-nullary constructor (so it has some arguments), but
neither argument is a member of the ADT that it’s defining. All other non-nullary constructors up until now have
been internal. This distinction will be relevant for us during the next lecture, when we will be studying structural
induction.

We can define getters that retrieve the elements of a pair:

f i r s t : P air → N

(FST) first(P (x, y)) = x

second : P air → N

(SND) second(P (x, y)) = y

We can also define other operations, such as summing the elements of the pair:

pairSum : P air → N

(PSUM) pairSum(P (x, y)) = x + y

4 Natural numbers
Up until now, we have used natural numbers and some arithmetical operations in the definitions of our ADTs. We
can also define natural numbers as a recursive ADT. A natural number is either the number zero, or the successor
of another natural numbers. This definition is based on Giuseppe Peano’s axioms for defining natural numbers.

Zero : Natural
Succ : Natural → Natural

The number one, is simply Succ(Zero); the number two is Succ(Succ(Zero)) and so on.

We can now define arithmetical operations, such as addition and multiplication:

add : Natural × Natural → Natural

(ADD1) add(Zero, n) = n
(ADD2) add(Succ(m), n) = Succ(add(m, n))

3

Analiza Algoritmilor Algebraic Data Types

mult : Natural × Natural → Natural

(MUL1) mult(Zero, n) = Zero
(MUL2) mult(Succ(m), n) = add(n, mult(m, n))

5 Binary trees
A binary tree is either a node with two children that contains a particular value, or the nil tree, containing no value
and having no children.

N i l : BT ree
Node : N × BT ree × BT ree → BT ree

Note that a “leaf” under this definition is simply a node whose children are both Nil.

Like for lists, we can start with an operator which checks whether a tree is nil or not:

i s N i l : BT ree → {F ALSE, T RUE}

(IN1) isNil(Nil) = T rue
(IN2) isNil(Node(x, l, r)) = F alse

We can write more interesting operators, for example to calculate the size of the tree, i.e. the number of nodes.
Note that this is similar to length for lists:

s i z e : BT ree → N

(SZ1) size(Nil) = 0
(SZ2) size(Node(x, l, r)) = 1 + size(l) + size(r)

h e i g h t : BT ree → N

(H1) height(Nil) = 0
(H2) height(Node(x, l, r)) = 1 + max(size(l), size(r))

6 Queue
QEmpty : Queue
Enqueue : N × Queue → Queue

peak : Queue → N

(PK1) peak(Enqueue(x, QEmpty)) = x
(PK2) peak(Enqueue(x, Enqueue(y, ys)) = peak(Enqueue(y, ys))

We cannot peak at the top element if there are no elements; in other words, the peak operator is undefined for
QEmpty.

dequeue : Queue → Queue

(DQ1) dequeue(Enqueue(x, QEmpty)) = QEmpty
(DQ2) dequeue(Enqueue(x, xs)) = Enqueue(x, dequeue(xs))

4

Analiza Algoritmilor Algebraic Data Types

7 Map
A “map”, or “dictionary” or “associative array” is a structure that stores (key, value) pairs.

In our example, both the key and the value are natural numbers. Although usually, this data structure is interesting
for its implementation that have faster-than-linear insertion and searching, we will not concern ourselves with
efficiency; search will be done in linear time, by potentially going through each entry, one by one.

MEmpty : Map
I n s e r t : N × N × Map → Map

e x i s t s : Map × N → N

(EX1) exist(Insert(k′, k, v, MEmpty) = F ALSE
(EX2) exist(Insert(k′, k, v, m) = if k′ = k then T RUE else exist(k′, m)

get : Map × N → N

(GT 1) get(Insert(k, v, m), k′) = if k′ = k then v else get(k′, m)

8 A note on the term “algebraic”
The term “algebraic” refers to the fact that the methods of constructing these data types (multiple constructors/-
multiple arguments) form an algebra.

Consider a type with a single constructor that has two arguments, modelling pair of booleans:

BoolP : Bool × Bool → BoolP air

There are two possible Bool values, so there are 2 × 2 = 4 possible BoolPair values:

BoolP (Fa l s e , F a l s e)
BoolP (Fa l s e , True)
BoolP (True , True)
BoolP (True , F a l s e)

In other words, the two-argument constructor ends up creating the cartesian product between its two types; and
that also applies for types with infinite values, such as natural numbers.

Adding another constructor extends our type with those values produced by the new constructor, which is akin to
addition. The next, rather artificial ADT “BoolOrBoolPair”, models either a single boolean or a pair of booleans,
employing two constructors:

BS ing l e : Bool → BoolOrBoolP air
BPair : Bool × Bool → BoolOrBoolP air

There are now 2 + 4 = 6 possible values – the union between the sets of values generated by each constructor.

BS ing l e (F a l s e)
BS ing l e (True)
BPair (Fa l s e , F a l s e)
BPair (Fa l s e , True)
BPair (True , True)
BPair (True , F a l s e)

5

Analiza Algoritmilor Algebraic Data Types

9 References and further reading

The historical survey A History of Haskell: Being Lazy with Class‡ by Paul Hudak, John Hughes, Simon Peyton Jones
and Philip Wadler [1] traces the origins of algebraic data type to the works of Rod Burstall and John Darlington: the
1969 Proving properties of programs by structural induction [2] and the 1977 A transformation system for developing
recursive programs [3].

Embedding ADTs in a programming language is attributed to the language HOPE, presented in the 1980 article:
Hope: An Experimental Applicative Language [4], by Rod Burstall, David MacQueen and Donald Sannella.

Independent researcher Li-yao XIA traces the first occurrence of the term “algebraic data type”§ to David Turner’s
1985 article: Miranda: A non-strict functional language with polymorphic types [5].

Bibliography
[1] Paul Hudak et al. “A history of Haskell: being lazy with class”. In: Proceedings of the third ACM SIGPLAN

conference on History of programming languages. 2007, pp. 12–1.
[2] Rod M Burstall. “Proving properties of programs by structural induction”. In: The Computer Journal 12.1

(1969), pp. 41–48.
[3] Rod M Burstall and John Darlington. “A transformation system for developing recursive programs”. In:

Journal of the ACM (JACM) 24.1 (1977), pp. 44–67.
[4] Rod M Burstall, David B MacQueen, and Donald T Sannella. “HOPE: An experimental applicative language”.

In: Proceedings of the 1980 ACM conference on LISP and functional programming. 1980, pp. 136–143.
[5] David A Turner. “Miranda: A non-strict functional language with polymorphic types”. In: Conference on

Functional Programming Languages and Computer Architecture. Springer. 1985, pp. 1–16.

‡Haskell is a functional programming language that employs ADTs; you will study it on the second semester, at the Programming
Paradigm course

§https://blog.poisson.chat/posts/2024-07-26-adt-history.html

6

https://blog.poisson.chat/posts/2024-07-26-adt-history.html

	The ``List'' ADT
	Booleans
	Tuples
	Natural numbers
	Binary trees
	Queue
	Map
	A note on the term ``algebraic''
	References and further reading

