

Source: <u>https://xkcd.com/844/</u>

Course structure

Fundamentals of characterizing and thinking about algorithms

Mathematical approach: formal definitions and rigorous proofs

Half of a complete algorithms course (+ PA on 2nd semester)

Syllabus – 1

Computability theory:

- What problems can(not) be solved by computers?
- Formal model of computation: Turing Machines
- Unsolvable problems, the halting problem
- How to prove problems are (un)solvable

Syllabus – 2

Complexity theory:

- What does it mean for an algorithm to be "efficient"?
- What does it mean for a problem to be hard/easy?
- Bachmann-Landau notation $(O(n), O(n^2), O(n \log n))$
- *P vs*.*NP*

Syllabus – 3

Recurrence relations:

• How to determine complexity of recursive algorithms

Amortized analysis:

• How to determine complexity of sequences of operations

Grading

Semester activities: **60 points**

Minimum 30 points required.

Assignments: 20 points

Midterm exam: 30 points

Lab attendance: **10 points**

Exam: 40 points

Minimum 20 points required.

Lecture

Very visual, few formal definitions and rigorous proofs

Slides and lecture notes available on moodle/wiki

Q&A strongly encouraged

Quick quizzes + programming challenges

Labs (10 points)

12 labs

1 point per lab

Physical presence + active engagement

Assignments (20 points)

Two assignments, **10 points each**

First assignment:

Second assignment (+ contest):

Turing Machines

SAT Solver

~3rd week – 5th week

~7th week -

Midterm exam (30 points)

15 multiple-choice questions, 2 points per questions

60 minutes

Either:

- Saturday, 7 DEC, 11:00 AM
- Wednesday, 4 DEC, 20:00 PM

Final exam (40 points)

You need a minimum of 30 points in semester activities to take the exam

You need a minimum of 20 points on the exam in order to pass

Task: try implementing a solution for one of the following three problems

Problem 1: Pairs

One pair = one "blue" word, one "yellow" word

Problem 1: Pairs (2)

Input:

Output: yes (we can find a sequence of matching pairs) / no (otherwise)

Problem 1: Pairs (3)

Output: yes

Problem 1: Pairs (4)

Output: no

17

Problem 2: Monitor

What is the minimum number of PCs required to monitor all links?

Problem 2: Monitor (2)

Problem 3: Decoding

Input:

Output: is it possible to decode some sequence in (at least) two different ways?

Problem 3: Decoding (2)

- **A** 00
- B 01Output: noC 10
- D 11

Summary

Pairs

Is there a matching sequence of pairs?

2

Monitor

What is the minimal number of PCs to monitor all links?

Decoding

Is there a sequence which can be decoded in different ways?

Optional Task

2 bonus points for exam (40 points total)

Choose one problem and solve it

All honest attempts will get the points

Upload the solution to moodle

Deadline: Tuesday, 08 OCT 2024, 14:00