This is an old revision of the document!
Examen LFA
Intrebarea 1:
- AFD
- AFN
- Expresii regulate
1.1. Fie urmatoarea expresie regulata $ E = 0\cup(101\cup 010)\cup 00(01 \cup 10 \cup \epsilon)11$ . Care afirmatie este adevarata privitor la limbajul $ L(E)$ ?
- $ L(E) = \emptyset$
- $ L(E)$ este finit.
- $ L(E)$ este regulat.
- $ L(E)$ contine sirul vid.
1.2. Este posibil ca un AFD $ A_1$ sa aibe mai putine stari decat un AFN $ A_2$ , daca stim ca $ L(A_1) = L(A_2)$ ? Dar daca ambele sunt rezultatul algoritmilor de conversie de la expresii regulate prezentati la curs?
1.3. Identificati doua AFD-uri $ A_1$ si $ A_2$ cu o singura stare*, astfel incat: $ L(A_1) = \overline{L(A_2)}$ . Intrebarea 2: * Conversii * Lema de Pompare * Proprietati de inchidere are LR 2.1. Fie $ E$ o ER. Sa presupunem ca $ A_1$ este rezultatul aplicarii algoritmului de transformare al ER in APD si ca $ A_2$ este un automat cu numar dublu de stari fata de $ A_1$ , astfel incat $ L(A_2) = L(E)$ . Comentati fiecare afirmatie de mai jos (adevarat, fals, de ce?) * automatul $ A_2$ nu poate exista. * daca exista un cuvant $ w \in L(A_1)$ astfel incat $ w \not\in L(A_2)$ atunci algoritmul de transformare a fost aplicat gresit. * daca pt toate cuvintele $ w \in L(A_1)$ , avem $ w \in L(A_2)$ atunci algoritmul de transformare a fost aplicat corect. 2.2. Fie $ A$ un AFD, $ E_1$ o ER care genereaza $ \overline{L(A)}$ si $ E_2$ o ER care genereaza $ L(A)$ . Care afirmatie este adevarata? * $ L(E_1E_2) = \emptyset$ * daca $ E_1$ genereaza doar siruri de lungime para, atunci $ E_2$ genereaza doar siruri de lungime impara. * $ L(E_1 \cup E_2) = \Sigma^*$ * $ L(E_1) \subsetneq L(E_2)$ 2.3. Fie limbajul $ L= L(01^*)\cdot\{1^n0^m\mid n\geq m\}$ . Care afirmatie este adevarata (justificati): * $ L$ este regulat. * $ w_n=01^{2n}0^n$ este o alegere corecta pentru a demonstra ca $ L$ nu este regulat. Daca da, cine este $ i$ ? * $ L$ este independent de context. Intrebarea 3: * APD * Gramatici IC 3.1. Fie urmatoarea gramatica IC $ G$ : $ S \leftarrow 0S0 \mid 1S0 \mid A, A \leftarrow BS \mid 0B, B \leftarrow 1A $ . Cate stari ar contine un APD care accepta $ L(G)$ ? 3.2. Fie $ \Sigma = \{0,1\}$ si $ G$ o gramatica cu o singura regula. Care afirmatie este adevarata? * $ L(G)$ este infinit. * $ L(G)$ este un limbaj regulat. * $ L(G)$ poate fi scris ca reuniunea dintre un limbaj regulat si unul independent de context (dar neregulat). 3.3. Ce limbaj genereaza urmatoarea gramatica: $ S \leftarrow 0SA \mid ASB, A \leftarrow 0BA \mid 1S \mid 0A, B \leftarrow B1 \mid 0B \mid 1 \mid 0 $ Intrebarea 4: * Ambiguitate * Forma N. Cholmsky 4.1. De ce este urmatoarea gramatica ambigua? $ S \leftarrow 0S1\mid 1S0\mid 1S\mid S0\mid \epsilon$ 4.2. O gramatica in Forma Normala Cholmsky poate fi ambigua? Justificati. 4.3. Scrieti o gramatica in Forma Normala Cholmsky pentru limbajul $ \{0^n1^n \mid n > 0\}$ . Intrebarea 5: * Conversie GIC-APD * Gramatici Regulate 5.1. Fie $ L$ un limbaj acceptat de urmatoarea gramatica: $ S \leftarrow 0S \mid 1S \mid A, A \leftarrow 1 \mid 0B, B \leftarrow 0 \mid 1A $ . Comentati fiecare afirmatie de mai jos: (adevarat/fals, si de ce?) * Limbajul $ L$ este un limbaj independent de context * Limbajul $ L$ este un limbaj regulat * Limbajul $ L$ este un limbaj regulat dar nu independent de context 5.2. Este urmatoarea gramatica $ S\leftarrow 0S \mid A \mid B, A \leftarrow S1 \mid \epsilon, B \leftarrow 0S \mid \epsilon$ regulata? Justificati. 5.3. Fie $ A$ un APD care foloseste doar primele 5 pozitii de pe stiva. Care afirmatie este adevarata? * $ L(A)$ este finit. * $ L(A)$ este regulat. * $ L(A)$ este independent de context. * $ L(A)$ este infinit. Intrebarea 6: * Prop. de inchidere ale LIC * Masini Turing 6.1. Dati un exemplu de limbaj regulat a carui intersectie cu un limbaj independent de context produce un limbaj regulat. 6.2. Explicati de ce operatia complement nu este o proprietate de inchidere pentru limbaje independente de context**.
6.3. Ce fel de automat poate accepta limbajul $ \{ww^Rw \mid w \in \{0,1\}^*\}$ ?