This is an old revision of the document!
7. Closure properties
7.1.1. Identify different strategies to verify that two regular expressions generate the same language. State them as algorithmic procedures.
7.1.2. Write a regex for the complement of $ L((10 \cup 0)^*(1 \cup \epsilon))$ .
7.1.3. Suppose $ A$ is a DFA. Write another DFA which accepts only those words $ w$ such that both $ w \in L(A)$ and $ reverse(w) \in L(A)$ .
Quotients
Let $ L \subseteq \Sigma^* $ be a language and $ c \in \Sigma $ a symbol. The quotient of $ L $ and $ c $ is the language defined as $ L/c = \{ w \in \Sigma^* | wc \in L\} $.
7.2.1. Let $ L = L((aaa \cup ba)^*(ab)^* )$. What is the language $ L/a $ ?
7.2.2. Let $ L = L(a^*)$. What is the language $ L/a $ ?
7.2.3. Prove that if $ L $ is a regular language, then $ L/c$ is a regular language $ \forall c \in \Sigma$.
7.2.4. Let $ L \subseteq \Sigma^* $ be a language and $ c \in \Sigma $ a symbol. Then $ c / L = \{ w \in \Sigma^* | cw \in L \} $. Prove that if $ L $ is a regular language, then $ a / L $ is a regular language,$ \forall a \in \Sigma$.
Suffixes and prefixes
7.3.1. Prove that $ \text{suffix}(L) = \{ w \in \Sigma^* | \exists x \in \Sigma^*, \: \text{such that} \: xw \in L \} $ is a closure property.
Other transformations
Let $ min(L) = \{ w \in L | \; \nexists x \in L, \; y \in \Sigma^* \setminus \{\epsilon\}, \: \text{such that} \: xy = w \}$.
Example: If $ L = \{ aab, bab, aa \} $, then $ min(L) = \{ bab, aa \} $.
7.4.1. Describe $ min(L)$ without mathematical notation.
7.4.2. What is the language $ min(L(a^*)) $ ?
7.4.3. What is the language $ min(L(a^*b)) $ ?
7.4.4. Prove that $ min $ has the closure property with respect to the regular languages.
7.4.5. Let $ L$ be a regular language and $ R = \{xy \mid yx \in L\}$ . Both $ x$ and $ y$ can be empty strings. Show that $ R$ is regular.
Extras
7.5.1. (Solved during lecture) Define the reversal of a language $ L $ as $ rev(L) = \{ w \in \Sigma^* | rev(w) \in L \}$, where $ rev(c_1c_2 \dots c_n) = c_nc_{n - 1} \dots c_1$ , with $ c_i \in \Sigma, 1 \leq i \leq n $. Show that reversal is a closure property.
7.5.2. Invent a language transformation or an operation between languages. See if you can show that it is a closure property.