This is an old revision of the document!


1.

  • $ T_a(n) = 2T_a(n-1) + 1$

nu se poate aplica master

  • $ T_b(n) = T_b(n-1) + 1$

nu se poate aplica master
Prin metoda arborelui obtinem n niveluri continand cate o constanta si un nod, deci $ T_b(n) = n * \Theta(1) = \Theta(n) $.

  • $ T_c(n) = 2T_c(n/2) + \log(n)$

Metoda substitutiei TODO
Vrem sa demonstram ca $ T_c(n) = \Theta(n), \ presupunem \ T_c(1) = 1$
$ \Leftrightarrow \exists k_1, k_2 > 0 $ a.i. $ k_1 n \le T_c(n) \le k_2 n$
Caz de baza: n = 2
$ c_1 * 2 \le T_c(2) \le c_2 * 2 $
$ c_1 * 2 \le 2 * T_c(1) + \log 2 \le c_2 * 2 $
$ c_1 * 2 \le 3 \le c_2 * 2 $
(A) pentru $ c_1 = 1 $ si $ c_2 = 2 $
Pasul inductiv:
Presupunem $ T_c(\frac n 2) = \Theta(\frac n 2) $
$ \exists c_1, c_2 > 0 $ a.i.
$ c_1 \frac n 2 \le T_c(\frac n 2) \le c_2 \frac n 2 \ \ \ \ | *2 $
$ c_1 * n \le 2 * T_c(\frac n 2) \le c_2 * n \ \ \ \ | + \log n $
$ c_1 * n + \log n \le T_c(n)\le c_2 * n + \log n $
$ pentru\ k_1 = c_1 \Rightarrow k1n \le c_1n + \log n $
$ pentru\ k_2 = c_2 + 1 \Rightarrow c_2n + \log n \le k2 * n $
$ \qquad \qquad \qquad \qquad \: \Leftrightarrow c_2n + \log n \le (c_2 + 1) * n $
$ \Rightarrow k_1 * n \le c_1 * n + \log n \le T_c(n)\le c_2 * n + \log n \le k_2 * n $
$ T_c(n) \in \Theta(n) $
Teorema Master
$ a = 2, \ b = 2 \Rightarrow d = 1 $
$ f(n) = \log n \Rightarrow \ f(n) = O(\sqrt n) \Rightarrow c = \frac{1}{2} \ (c < d) $
$ \Rightarrow T_c(n) \in \Theta(n) $

  • $ T_d(n) = T_d(n/9) + T_d(8n/9) + n$

nu se poate aplica master

Desenand arborele, obtinem unele ramuri care se termina mai repede, altele mai incet, asa ca vom incadra timpul lui T intre 2 limite, $ S_1 $ si $ S_2 $

$ h_1 = \log_9n, h_2 = \log_{\frac 9 8}n $

$ S_1 = \sum_0^{h_1-1} n + T(1) * 2 ^ {h_1} = n * h_1 +2 ^ {h_1} = n*\log_9n + 2^{\log_9n} \in \Theta(n\log n) $
$ S_2 = \sum_0^{h_2-1} n + T(1) * 1 = n * h_2 + 1 = n*\log_{\frac 9 8} n + 1 \in \Theta(n\log n) $

⇒ $ T(n) \in \Theta(n \log n)$

  • $ T_e(n) = T_e(2n/3) + 1$

Cazul 2 al Teoremei Master cu $ c = \log_{frac 3 2}1 = 0, k = 0 $ deci $ T_e(n) = \Theta(n^0 * \log^{0+1}n) \Theta(\log n) $

  • $ T_{Strassen}(n) = 7T_{Strassen}(n/2) + n^2 $

$ c = \log_27 \approx 2.81 $ ⇒ cazul 1 al teoremei master, deci $ T_{Strassen}(n) = \Theta(n ^ {\log_27}) \approx \Theta(n ^ {2.81}) $

  • $ T_{Karatsuba}(n) = 3T_{Karatsuba}(n/2) + 1 $

$ c = \log_23 \approx 1.58 $ ⇒ cazul 1 al teoremei master, deci $ T_{Karatsuba}(n) = \Theta(n ^ {\log_23}) \approx \Theta(n ^ {1.58}) $

  • $ T_{Quicksort}(n) = T_{Quicksort}(n-1) + O(n) $

nu se poate aplica master
Folosind metoda arborelui, fiecare nivel $ h $ va contine nodul $ T(n-h) $ si costul $ n-h $. Obtinem formula $ T_{Quicksort}(n) = \sum_{i=0}^{n-2} (n-i) + 1 * T(1) = \frac {n(n+1)} 2 \in \Theta(n^2) $

*TODO subpunct*

2.

  • $ T_a(n) = T_a(\sqrt{n}) + 1 $

Notam \( n = 2^k \)
⇒ $ T_a(2^k) = T_a(\sqrt{2^k}) + 1$
⇒ $ T_a(2^k) = T_a(2^ \frac{k}{2}) + 1$
$ fie \ S(k) = T_a(2^k) $
$ \Rightarrow S(k) = S(k/2) + 1 $
Teorema Master
a = 1, b = 2 ⇒ d = 0
c = d = 0 (k = 0) ⇒ $ S(k) = \Theta(\log k) $
⇒ $ T_a(2^k) = \Theta(\log k) $
⇒ $ T_a(n) = \Theta(\log \log n) $