TDA-uri și inducție structurală
1.
(APP1) append(Empty, l) = l (APP2) append(Cons(x, xs), l) = Cons(x, append(xs, l))
(REV1) reverse(Empty) = Empty (REV2) reverse(Cons(x, xs)) = append(reverse(xs), Cons(x, Empty))
2.
(M1) mirror(Nil) = Nil (M2) mirror(Node(e, l, r)) = Node(e, mirror(r), mirror(l))
(F1) flatten(Nil) = Empty (F2) flatten(Node(e, l, r)) = Cons(e, append(flatten(l), flatten(r)))
3.
(UPD1) update(MEmpty, k, v) = Insert((k, v), MEmpty) (UPD2) update(Insert((k, v), m), k', v') = if k = k' then Insert((k, v'), m) else Insert((k, v), update(m, k', v'))
(DEL1) delete(MEmpty, k) = MEmpty (DEL2) delete(Insert((k, v), m), k') = if k = k' then m else Insert((k, v), delete(m, k'))
4.
- $ \forall t \in \texttt{BTree}. size(t) = size(mirror(t)) $
cazul de baza: mirror(Nil) = Nil (M1) => size(Nil) = size(mirror(Nil)) ipoteza inductiei: size(l) = size(mirror(l)), size(r) = size(mirror(r)) size(Node(e, l, r)) = 1 + size(l) + size(r) (S2) = 1 + size(r) + size(l) (comutativitatea adunării) = 1 + size(mirror(r)) + size(mirror(l)) (ipoteza inductiei) = size(Node(e, mirror(r), mirror(l))) (S2) = size(mirror(Node(e, l, r)) (M2)
- $ \forall t \in \texttt{BTree}. size(t) = length(flatten(t)) $
cazul de baza: size(Nil) = (S1) = 0 = (L1) = length(Empty) = (F1) = length(flatten(Nil)) ipoteza inductiei: size(l) = length(flatten(l)), size(r) = length(flatten(r)) size(Node(e, l, r)) = 1 + size(l) + size(r) (S2) = 1 + length(flatten(l)) + length(flatten(r)) (ipoteza inductiei) = 1 + length(append(flatten(l), flatten(r)) (vom demonstra) = length(Cons(e, append(flatten(l), flatten(r))) (L2) = length(flatten(Node(e, l, r))) (F2)
mai trebuie sa demonstram pasul intermediar: demonstram ca
length(append(a, b)) = length(a) + length(b) (LAPP) prin inductie dupa a cazul de baza: length(append(Empty, b)) = length(b) (APP1) = 0 + length(b) = length(Empty) + length(b) ipoteza inductiei: length(append(xs, b)) = length(xs) + length(b) pasul inductiei: length(append(Cons(x, xs), b)) = length(Cons(x, append(xs, b))) (APP2) = 1 + length(append(xs, b)) (L2) = 1 + length(xs) + length(b) (ip. inductiei) = length(xs) + 1 + length(b) (comutativitatea adunării) = length(Cons(x, xs)) + length(b) (L2)
- $ \forall l \in \texttt{List}. append(l, Empty) = l $
cazul de baza: append(Empty, Empty) = Empty (APP1) ipoteza inductiei: append(xs, Empty) = s append(Cons(x, xs), Empty) = Cons(x, append(xs, Empty)) (APP2) = Cons(x, s) (ip. inductiei)
- $ \forall l_1, l_2, l_3 \in \texttt{List}. append(l_1, append(l_2, l_3)) = append(append(l_1, l_2), l_3) $
facem inductie structurala dupa l_1. Vom nota append(a, b) cu a ++ b ca sa ne fie mai usor cazul de baza: Empty ++ (l_2 ++ l_3)) = l_2 ++ l_3 (APP1) = (Empty ++ l_2) ++ l_3 (APP1) ipoteza inductiei: l_1 ++ (l_2 ++ l_3) = (l_1 ++ l_2) ++ l_3 pasul inductiei: Cons(x, l_1) ++ (l_2 ++ l_3) = Cons(x, l_1 ++ (l_2 ++ l_3)) (APP2) = Cons(x, (l_1 ++ l_2) ++ l_3) (ip. inductiei) = Cons(x, l_1 ++ l_2) ++ l_3 (APP2) = (Cons(x, l_1) ++ l_2) ++ l_3 (APP2)
- $ \forall l_1, l_2 \in \texttt{List}. length(append(l_1, l_2)) = length(append(l_2, l_1)) $
facem inductie structurala dupa l_1 cazul de baza: length(append(Empty, l_2)) = length(l_2) (APP1) = length(append(l_2, Empty)) (4.c) ipoteza inductiei: length(append(l_1, l_2)) = length(append(l_2, l_1)) pasul inductiei: length(append(Cons(x, l_1), l_2)) = length(Cons(x, append(l_1, l_2))) (APP2) = 1 + length(append(l_1, l_2)) (L2) = 1 + length(l_1) + length(l_2) (LAPP) = length(l_2) + 1 + length(l_1) (comutativitatea adunării) = length(l_2) + length(Cons(x, l_1)) (L2) = length(append(l_2, Cons(x, l_1))) (LAPP)
- $ \forall l_1, l_2 \in \texttt{List}. reverse(append(l_1, l_2)) = append(reverse(l_2), reverse(l_1)) $.
facem inductie structurala dupa l_1 cazul de baza: reverse(append(Empty, l_2)) = reverse(l_2) (APP1) = append(reverse(l_2), Empty) (4.c) = append(reverse(l_2), reverse(Empty)) (REV1) ipoteza inductiei: reverse(append(l_1, l_2)) = append(reverse(l_2), reverse(l_1)) pasul inductiei: reverse(append(Cons(x, l_1), l_2)) = reverse(Cons(x, append(l_1, l_2))) (APP2) = append(reverse(append(l_1, l_2)), Cons(x, Empty)) (REV2) = append(append(reverse(l_2), reverse(l_1)), Cons(x, Empty)) (ip. inductivă) = append(reverse(l_2), append(reverse(l_1), Cons(x, Empty))) (4.d) = append(reverse(l_2), reverse(Cons(x, l_1))) (REV2)