Let L be an infinite regular language. Then, $\exists n \in \mathbb{N}$: $ \forall w\ \ \text{s.t.}\ \ |w| \ge n $, $ w = xyz $, $ |xy| \le n $ and $ y \neq \varepsilon $, such that $ \forall k \ge 0, w_{k} = xy^{k}z \in L$.
Let L be an infinite language. If $\forall n \in \mathbb{N}$, $\exists w_{n} \in L $ with $ |w| \ge n $ such that regardless of how $ w_{n} $ is split into ($ \forall x, y, z \in \Sigma^* $) $ w_{n} = xyz $ with $ |xy| \le n $ and $ y \neq \varepsilon $, $\exists k \ge 0 $ such that $ w_{n} = xy^{k}z \notin L $, then L in not a regular language.
8.1.1. Show that the pumping lemma holds for finite languages.
8.1.2.* Find a language which is not regular for which the pumping lemma holds.
Show that each of the languages from the list below is not regular.
8.2.1. $ L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $
8.2.2. $ L = \{ \: w \in \{A,B\}^* \: | \: \#_A(w) = \#_B(w) \: \} $
8.2.3. $ L = \{(01)^n(10)^n \mid n > 0 \} $
8.2.4. $ L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $
8.2.5. $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $
8.2.6. $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $
8.2.7. $ L = \{ \: ww^R \: | \: w\in \{0,1\}^* \} $
8.3.1. Using the pumping lemma, prove that $ L = \{ \: A^nB^m \: | \: n \neq m \}$ is not a regular language.
Exercise I Show that $ \text{snd(L)}$ is a closure property for regular languages.
$ \text{snd(L)} = \{ \: w \: | \: xw \in L \: \text{, for some x such that |x| = |w|} \: \}$
Exercise II Prove that $ L = \{ \: A^nB^mC^{n-m} \: | \: n \geq m \geq 0 \: \}$ is not a regular language without using isomorphisms.