The  PDA has the following transitions looping on state q:
-  $ \epsilon, S/a $ 
-  $ \epsilon, S/xAz $ 
-  $ \epsilon, S/SbS $  
-  $ \epsilon, S/cS $   
-  $ \epsilon, A/SyS $   
-  $ \epsilon, A/SyStS $   
-  $ a, a/\epsilon $  
-  $ b, b/\epsilon $ 
-  $ c, c/\epsilon $ 
-  $ x, x/\epsilon $ 
-  $ y, y/\epsilon $ 
-  $ z, z/\epsilon $ 
-  $ t, t/\epsilon $ 
Input: xayxcayatabcazz 
(xayxcayatabcazz, q, S) ⇒ (xayxcayatabcazz, q, xAz) ⇒ (ayxcayatabcazz, q, Az) ⇒ (ayxcayatabcazz, q, SySz) ⇒ (ayxcayatabcazz, q, aySz) ⇒ (yxcayatabcazz, q, ySz) ⇒ (xcayatabcazz, q, Sz) ⇒ (xcayatabcazz, q, xAzz) ⇒ (cayatabcazz, q, Azz) ⇒ (cayatabcazz, q, SyStSzz) ⇒ (cayatabcazz, q, cSyStSzz) ⇒ (ayatabcazz, q, SyStSzz) ⇒ (ayatabcazz, q, ayStSzz) ⇒ (yatabcazz, q, yStSzz) ⇒ (atabcazz, q, StSzz) ⇒ (atabcazz, q, StSzz) ⇒ (atabcazz, q, atSzz) ⇒ (tabcazz, q, tSzz) ⇒ (abcazz, q, Szz) ⇒ (abcazz, q, SbSzz) ⇒ (abcazz, q, abSzz) ⇒ (bcazz, q, bSzz) ⇒ (cazz, q, Szz) ⇒ (cazz, q, cSzz) ⇒ (azz, q, Szz) ⇒ (azz, q, azz) ⇒ (zz, q, zz)  ⇒ (z, q, z) ⇒ ($\epsilon$, q, $\epsilon$)
Is the grammar ambiguuous? yes because of word ababa that has 2 different left-derivations 
S ⇒ SbS ⇒ abS ⇒ abSbS ⇒ ababS ⇒ ababa 
S ⇒ SbS ⇒ SbSbS ⇒ abSbS ⇒ ababS ⇒ ababa 
It is hard to directly explain the language in this form. Another form may be easier. Let's relabel the terminals: a ⇒ bool; b ⇒ and; c ⇒ not; x ⇒ if; y ⇒ then; z ⇒ fi; t ⇒ else.
The grammar becomes: $ S \leftarrow bool | if  A  fi | S  and  S | not  S  \\ A \leftarrow S  then  S | S  then  S  else  S $
The language generated can be described as the language of boolean expressions (considering 'bool' is either a variable or a literal) with the operations 'and', 'not', 'if-then' and 'if-then-else'.
Why is it ambigous? The 'and'/b operator does not define its associativity, and the operators 'and'/b and 'not'/c do not have a clear precedence rule.
To fix this grammar we will use the following conventions: ababa == (aba)ba and caba == (ca)ba 
Repaired grammar: 
$ S \leftarrow TbS | T  \\ T \leftarrow cT | xAz | a \\ A \leftarrow SyS | SyStS $