====== 10. Context-Free Languages & Lexers ====== ===== 10.1. Context-Free Grammar to PDA conversion ===== For each context-free grammar G: \\ - describe L(G) \\ - algoritmically construct a PDA that accepts the same language \\ - run the PDA on the given inputs \\ - is the grammar ambiguous? If yes, write a non ambiguous grammar that generates the same language \\ **10.1.1** input: aaaabb \\ $ S \leftarrow aS | aSb | \epsilon $ \\ The start symbol of the PDA is S. \\ The PDA will only have one state q and it will accept via empty stack. \\ For each nonterminal/rule $ A \leftarrow \gamma $ add a transition **q ---$(\epsilon, A/ \gamma)$--➤ q** and for each terminal c add **q ---$(c, c/ \epsilon)$--➤ q** Thus, our PDA has the following transitions looping on state q: * $ \epsilon, S/aS $ * $ \epsilon, S/aSb $ * $ \epsilon, S/\epsilon $ * $ a, a/\epsilon $ * $ b, b/\epsilon $ Input: aaabb \\ (aaabb, q, S) => (**a**aabb, q, **a**Sb) => (aabb, q, Sb) => (**a**abb, q, **a**Sbb) => (abb, q, Sbb) => (**a**bb, q, **a**Sbb) => (bb, q, Sbb) => (bb, q, bb) => (b, q, b) => ($\epsilon$, q, $\epsilon$) \\ \\ Is the grammar ambiguuous? yes, because there exist 2 different left-derivations for word aaabb \\ S => aSb => aaSbb => aaaSbb => aaabb \\ S => aS => aaSb => aaaSbb => aaabb \\ \\ The accepted language is $ L(G) = \{a^{m}b^{n} | m \ge n \ge 0\} $ \\ \\ Repaired grammar: \\ $ S \leftarrow aS | A \\ A \leftarrow aAb | \epsilon $ **10.1.2** input: xayxcayatabcazz \\ $ S \leftarrow a | xAz | SbS | cS \\ A \leftarrow SyS | SyStS $ The PDA has the following transitions looping on state q: * $ \epsilon, S/a $ * $ \epsilon, S/xAz $ * $ \epsilon, S/SbS $ * $ \epsilon, S/cS $ * $ \epsilon, A/SyS $ * $ \epsilon, A/SyStS $ * $ a, a/\epsilon $ * $ b, b/\epsilon $ * $ c, c/\epsilon $ * $ x, x/\epsilon $ * $ y, y/\epsilon $ * $ z, z/\epsilon $ * $ t, t/\epsilon $ Input: xayxcayatabcazz \\ (xayxcayatabcazz, q, S) => (xayxcayatabcazz, q, xAz) => (ayxcayatabcazz, q, Az) => (ayxcayatabcazz, q, SySz) => (ayxcayatabcazz, q, aySz) => (yxcayatabcazz, q, ySz) => (xcayatabcazz, q, Sz) => (xcayatabcazz, q, xAzz) => (cayatabcazz, q, Azz) => (cayatabcazz, q, SyStSzz) => (cayatabcazz, q, cSyStSzz) => (ayatabcazz, q, SyStSzz) => (ayatabcazz, q, ayStSzz) => (yatabcazz, q, yStSzz) => (atabcazz, q, StSzz) => (atabcazz, q, StSzz) => (atabcazz, q, atSzz) => (tabcazz, q, tSzz) => (abcazz, q, Szz) => (abcazz, q, SbSzz) => (abcazz, q, abSzz) => (bcazz, q, bSzz) => (cazz, q, Szz) => (cazz, q, cSzz) => (azz, q, Szz) => (azz, q, azz) => (zz, q, zz) => (z, q, z) => ($\epsilon$, q, $\epsilon$)\\ \\ Is the grammar ambiguuous? yes because of word ababa that has 2 different left-derivations \\ S => SbS => abS => abSbS => ababS => ababa \\ S => SbS => SbSbS => abSbS => ababS => ababa \\ \\ It is hard to directly explain the language in this form. Another form may be easier. Let's relabel the terminals: a => bool; b => and; c => not; x => if; y => then; z => fi; t => else.\\ The grammar becomes: $ S \leftarrow bool | if A fi | S and S | not S \\ A \leftarrow S then S | S then S else S $\\ The language generated can be described as the language of boolean expressions (considering 'bool' is either a variable or a literal) with the operations 'and', 'not', 'if-then' and 'if-then-else'. \\ Why is it ambigous? The 'and'/b operator does not define its associativity, and the operators 'and'/b and 'not'/c do not have a clear precedence rule.\\ To fix this grammar we will use the following conventions: ababa == (aba)ba and caba == (ca)ba \\ Repaired grammar: \\ $ S \leftarrow TbS | T \\ T \leftarrow cT | xAz | a \\ A \leftarrow SyS | SyStS $ \\ **10.1.3** input: aaabbbbbccc \\ $ S \leftarrow ABC \\ A \leftarrow aA | \epsilon \\ B \leftarrow bbB | b \\ C \leftarrow cC | c $ The PDA has the following transitions looping on state q: * $ \epsilon, S/ABC $ * $ \epsilon, A/aA $ * $ \epsilon, A/\epsilon $ * $ \epsilon, B/bbB $ * $ \epsilon, B/b $ * $ \epsilon, C/cC $ * $ \epsilon, C/c $ * $ a, a/\epsilon $ * $ b, b/\epsilon $ * $ c, c/\epsilon $ Input: aaabbbbbccc \\ (aaabbbbbccc, q, S) => (aaabbbbbccc, q, ABC) => (aaabbbbbccc, q, aABC) => (aabbbbbccc, q, ABC) => => (aabbbbbccc, q, aABC) => (abbbbbccc, q, ABC) => (aabbbbbccc, q, ABC) => (aabbbbbccc, q, aABC) => => (abbbbbccc, q, ABC) => => (abbbbbccc, q, aABC) => (bbbbbccc, q, ABC) => (bbbbbccc, q, BC) => (bbbbbccc, q, bbBC) => (bbbbccc, q, bBC) => (bbbccc, q, BC) => (bbbccc, q, bbBC) => (bbccc, q, bBC) => (bccc, q, BC) => (bccc, q, bC) => (ccc, q, C) => (ccc, q, cC) => (cc, q, C) => (cc, q, cC) => (c, q, C) => (c, q, c) => ($\epsilon$, q, $\epsilon$) \\ \\ Is the grammar ambiguuous? no \\ \\ The accepted language is $ L(G) = \{a^{m}b^{2n + 1}c^{p+1} | m,n,p \ge 0\} $ \\ ===== 10.2. Lexer Spec ===== Given the following specs, construct the lexer DFA as presented in Lecture 14: * PAIRS: $ (10 | 01)* $ * ONES: $ 1+ $ * NO_CONSEC_ONE: $ (1 | \epsilon)(01 | 0)* $ Separate the following input strings into lexemes: * 010101 Although the entire string is matched by PAIRS and NO_CONSEC_ONE, PAIRS is defined first, thus it will be the first picked. \\ PAIRS "010101" * 1010101011 First we have a maximal match on "101010101" for regex NO_CONSEC_ONE. The remaining string, "1", is matched by both ONES and NO_CONSEC_ONE, but ONES is defined first. \\ NO_CONSEC_ONE "101010101" \\ ONES "1" * 01110101001 PAIRS "01" \\ ONES "11" \\ NO_CONSEC_ONES "0101001" * 01010111111001010 PAIRS "010101" \\ ONES "11111" \\ NO_CONSEC_ONES "001010" * 1101101001111100001010011001 ONES "11" PAIRS "01101001" \\ ONES "1111" \\ NO_CONSEC_ONES "0000101001" \\ PAIRS "1001"