Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
pp:l09 [2020/04/25 19:09]
pdmatei
pp:l09 [2020/04/25 19:31] (current)
pdmatei
Line 15: Line 15:
 4. Write the stream of approximations of $math[e] [[https://​en.wikipedia.org/​wiki/​E_(mathematical_constant) | details ]]. 4. Write the stream of approximations of $math[e] [[https://​en.wikipedia.org/​wiki/​E_(mathematical_constant) | details ]].
  
-5. Write a function which takes a value ''​d''​, a sequence of approximations $math[(a_n)_{n\geq 0}] and returns that value $math[a_k] from the sequence which satisfies the condition $math[\mid a_k - a_{k+1}\mid \leq d]+5. Write a function which takes a value $math[d], a sequence of approximations $math[(a_n)_{n\geq 0}] and returns that value $math[a_k] from the sequence which satisfies the condition $math[\mid a_k - a_{k+1}\mid \leq d] 
 + 
 +6. Write a function which takes an $math[f], a value $math[a_0] and computes the sequence $math[a_0, f(a_0), f(f(a_0)), \ldots] 
 + 
 +7. The sequence $math[(a_n)_{n\geq 0}] defined as $math[a_{k+1} = (a_k + \frac{n}{a_k})/​2],​ will converge to $math[\sqrt{n}] as $math[k] approaches infinity. Use it to write a function which approximates $math[\sqrt{n}] within 3 decimals. 
 + 
 +8. The diagram below illustrates the approximation of an integral of a continuous function $math[f] between two points $math[a] and $math[b]. The simplest approximation is the area of the rectangle defined by points $math[a] and $math[b] on the $math[Ox] axis, and points $math[f(a)] and $math[f(b)]. 
 + 
 +To determine a better approximation,​ the interval $math[ [a,b] ] is broken in half and we add up the areas of the rectangles:​ 
 +  - $math[a,​m,​f(a),​f(m)] and 
 +  - $math[m,​b,​f(m),​f(b)] 
 +<​code>​ 
 +Oy 
 +   ​^ ​                           
 +f m|. . . . . . .  -------- 
 +   ​| ​             / ' ​     \    
 +   ​| ​            / ​ ' ​      ​\ ​ f     
 +f b|. . . . . . /. .'. . . . .------- ​     
 +   ​| ​      ​----- ​   ' ​        '​ 
 +f a|. . . /         ' ​        '​ 
 +   ​| ​    / ​         ' ​        '​ 
 +   ​| ​   / ' ​        ' ​        '​ 
 +   ​| ​  / ​ ' ​        ' ​        '​ 
 +   ​------------------------------> ​ Ox 
 +          a         ​m ​        b 
 + 
 +</​code>​ 
 + 
 +The process can be repeated by recursively dividing up intervals. Write the a function ''​integral''​ which computes the sequence of approximations of $math[\int_a^b f(x)]. 
 + 
 +<code haskell>​ 
 +integral :: (Float -> Float) -> Float -> Float -> [Float] 
 +</​code>​ 
 + 
 +9. It is likely that your implementation will recompute (unnecessarily) the values $math[f(a), m, f(m), f(b)] in recursive steps. Write an alternative implementation which avoids this. 
 + 
 +10. Consider a representation of maps (with obstacles as follows): 
 +<code haskell>​ 
 +l1=" ​  # ​    "​ 
 +l2=" #   # # " 
 +l3=" # ### # " 
 +l4=" #     # " 
 +l5=" ####### " 
 +l6=" ​        "​ 
 + 
 +data Map = Map [String] 
 + 
 +instance Show Map where 
 +  show (Map m) = "​\n"​ ++ foldr (\x acc->​x++"​\n"​++acc) [] m    
 + 
 +m = Map [l1,​l2,​l3,​l4,​l5,​l6] 
 + 
 +type State = (Int,Int) 
 + 
 +</​code>​  
 + 
 +Write the function ''​at''​ which returns the value of the position ''​x'',''​y''​ in the map: 
 +<code haskell>​ 
 +at :: Map -> Int -> Int -> Maybe Char 
 +</​code>​ 
 + 
 +11. Define a function which computes, for a given position, the list of valid //next positions// (a valid position is one that is on the map, and it is not a //wall//, i.e. a ''#''​). Hint, use the list ''​[(x-1,​y-1),​(x-1,​y),​(x-1,​y+1),​(x,​y-1),​(x,​y+1),​(x+1,​y-1),​(x+1,​y),​(x+1,​y+1)]''​. 
 + 
 +12. Implement the type ''​Tree a''​ of trees with arbitrary number of children nodes. 
 + 
 +13. Enrol ''​Tree''​ in class ''​Functor''​ (see classes), and define the function ''​fmap''​. 
 + 
 +14. Write a function which takes a (possibly infinite) tree and returns the sub-tree where each branch is of length at most ''​k'':​ 
 +<code haskell>​ 
 +take_t :: Integer -> Tree a -> Tree a 
 +</​code>​ 
 + 
 +15. Implement the infinite tree of valid positions, starting from an initial one. In this tree, paths represent trails exploring the map. 
 +<code haskell>​ 
 +make_st_tree :: Map -> State -> Tree State 
 +</​code>​ 
 +16. Implement the function ''​toMap''​ which //draws// a position on the map (using the character ''​.''​). 
 +<code haskell>​ 
 +toMap :: State -> Map -> Map 
 +</​code>​ 
 + 
 +17. Implement the tree of possible //trails// through the map: 
 +<code haskell>​ 
 +make_map_tree :: Map -> State -> Tree Map 
 +</​code>​