Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
pp:l09 [2020/04/25 19:06]
pdmatei
pp:l09 [2020/04/25 19:31] (current)
pdmatei
Line 14: Line 14:
  
 4. Write the stream of approximations of $math[e] [[https://​en.wikipedia.org/​wiki/​E_(mathematical_constant) | details ]]. 4. Write the stream of approximations of $math[e] [[https://​en.wikipedia.org/​wiki/​E_(mathematical_constant) | details ]].
 +
 +5. Write a function which takes a value $math[d], a sequence of approximations $math[(a_n)_{n\geq 0}] and returns that value $math[a_k] from the sequence which satisfies the condition $math[\mid a_k - a_{k+1}\mid \leq d]
 +
 +6. Write a function which takes an $math[f], a value $math[a_0] and computes the sequence $math[a_0, f(a_0), f(f(a_0)), \ldots]
 +
 +7. The sequence $math[(a_n)_{n\geq 0}] defined as $math[a_{k+1} = (a_k + \frac{n}{a_k})/​2],​ will converge to $math[\sqrt{n}] as $math[k] approaches infinity. Use it to write a function which approximates $math[\sqrt{n}] within 3 decimals.
 +
 +8. The diagram below illustrates the approximation of an integral of a continuous function $math[f] between two points $math[a] and $math[b]. The simplest approximation is the area of the rectangle defined by points $math[a] and $math[b] on the $math[Ox] axis, and points $math[f(a)] and $math[f(b)].
 +
 +To determine a better approximation,​ the interval $math[ [a,b] ] is broken in half and we add up the areas of the rectangles:
 +  - $math[a,​m,​f(a),​f(m)] and
 +  - $math[m,​b,​f(m),​f(b)]
 +<​code>​
 +Oy
 +   ​^ ​                          
 +f m|. . . . . . .  --------
 +   ​| ​             / ' ​     \   
 +   ​| ​            / ​ ' ​      ​\ ​ f    ​
 +f b|. . . . . . /. .'. . . . .------- ​    
 +   ​| ​      ​----- ​   ' ​        '​
 +f a|. . . /         ' ​        '​
 +   ​| ​    / ​         ' ​        '​
 +   ​| ​   / ' ​        ' ​        '​
 +   ​| ​  / ​ ' ​        ' ​        '​
 +   ​------------------------------> ​ Ox
 +          a         ​m ​        b
 +
 +</​code>​
 +
 +The process can be repeated by recursively dividing up intervals. Write the a function ''​integral''​ which computes the sequence of approximations of $math[\int_a^b f(x)].
 +
 +<code haskell>
 +integral :: (Float -> Float) -> Float -> Float -> [Float]
 +</​code>​
 +
 +9. It is likely that your implementation will recompute (unnecessarily) the values $math[f(a), m, f(m), f(b)] in recursive steps. Write an alternative implementation which avoids this.
 +
 +10. Consider a representation of maps (with obstacles as follows):
 +<code haskell>
 +l1=" ​  # ​    "​
 +l2=" #   # # "
 +l3=" # ### # "
 +l4=" #     # "
 +l5=" ####### "
 +l6=" ​        "​
 +
 +data Map = Map [String]
 +
 +instance Show Map where
 +  show (Map m) = "​\n"​ ++ foldr (\x acc->​x++"​\n"​++acc) [] m   
 +
 +m = Map [l1,​l2,​l3,​l4,​l5,​l6]
 +
 +type State = (Int,Int)
 +
 +</​code> ​
 +
 +Write the function ''​at''​ which returns the value of the position ''​x'',''​y''​ in the map:
 +<code haskell>
 +at :: Map -> Int -> Int -> Maybe Char
 +</​code>​
 +
 +11. Define a function which computes, for a given position, the list of valid //next positions// (a valid position is one that is on the map, and it is not a //wall//, i.e. a ''#''​). Hint, use the list ''​[(x-1,​y-1),​(x-1,​y),​(x-1,​y+1),​(x,​y-1),​(x,​y+1),​(x+1,​y-1),​(x+1,​y),​(x+1,​y+1)]''​.
 +
 +12. Implement the type ''​Tree a''​ of trees with arbitrary number of children nodes.
 +
 +13. Enrol ''​Tree''​ in class ''​Functor''​ (see classes), and define the function ''​fmap''​.
 +
 +14. Write a function which takes a (possibly infinite) tree and returns the sub-tree where each branch is of length at most ''​k'':​
 +<code haskell>
 +take_t :: Integer -> Tree a -> Tree a
 +</​code>​
 +
 +15. Implement the infinite tree of valid positions, starting from an initial one. In this tree, paths represent trails exploring the map.
 +<code haskell>
 +make_st_tree :: Map -> State -> Tree State
 +</​code>​
 +16. Implement the function ''​toMap''​ which //draws// a position on the map (using the character ''​.''​).
 +<code haskell>
 +toMap :: State -> Map -> Map
 +</​code>​
 +
 +17. Implement the tree of possible //trails// through the map:
 +<code haskell>
 +make_map_tree :: Map -> State -> Tree Map
 +</​code>​