Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
pp:l08 [2020/04/02 19:12]
pdmatei
pp:l08 [2020/04/12 22:34] (current)
uvlad
Line 1: Line 1:
-======= ​Lab The Lambda Calculus =======+======= 8The Lambda Calculus =======
  
 1. Consider the following datatype which encodes λ-expressions:​ 1. Consider the following datatype which encodes λ-expressions:​
Line 29: Line 29:
 </​code>​ </​code>​
  
-4. Write a function which takes a λ-expression of the form ''​(λx.<​body>​ <​arg>​)''​ and **reduces it in a SINGLE step**.+6. Write a function which takes a λ-expression of the form ''​(λx.<​body>​ <​arg>​)''​ and **reduces it in a SINGLE step**.
   - What should ''​(λx.(x x) y)''​ produce?   - What should ''​(λx.(x x) y)''​ produce?
   - What should ''​(λx.λx.(x x) y)''​ produce? ​   - What should ''​(λx.λx.(x x) y)''​ produce? ​
  
-5. Add two data constructors to the type ''​LExpr''​ so that we can also model functions and applications in uncurry form.+7. Add two data constructors to the type ''​LExpr''​ so that we can also model functions and applications in uncurry form.
 Examples: ''​(λx y z.<​body>​)'',​ ''​(f x y z)''​. Examples: ''​(λx y z.<​body>​)'',​ ''​(f x y z)''​.
  
-6. Write a proper display function for these new constructors.+8. Write a proper display function for these new constructors.
  
-7. Write a function ''​lcurry''​ which takes a curried ​λ-expression and transforms it in uncurry ​form.+9. Write a function ''​luncurry''​ which takes an uncurries ​λ-expression and transforms it in curry form.
 <code haskell> <code haskell>
 lcurry :: LExpr -> LExpr lcurry :: LExpr -> LExpr
 </​code>​ </​code>​
  
-8. Write a function ''​luncurry''​ which takes an uncurries ​λ-expression and transforms it in curry form. +10. Write a function ''​lcurry''​ which takes a curried ​λ-expression and transforms it in uncurry ​form. 
-Examples: ''​( ((f x) y) z)'' ​becomes ​''​(f x y z)''​. ​+<​code>​ 
 +(((f x) y) z)   ​becomes ​   (f x y z) 
 +(((f ((g a) b)) y) ((h u) v))  becomes ​ (f (g a b) y (h u v)) 
 +</​code>​  
 + 
 +11. Write the function ​''​fv''​ which computes the list of all **free variables** of a λ-expression. 
 +<code haskell>​ 
 +fv :: LExpr -> [Char] 
 +</​code>​ 
 + 
 +12. Write a function ''​bv''​ which computes the list of all **bound variables** of a λ-expression. 
 +<code haskell>​ 
 +bv :: LExpr -> [Char] 
 +</​code>​ 
 + 
 +13. Write a function ''​subst''​ which computes the //textual substitution of all free occurrences of some variable x by e in e'//, according to the lecture definition:​ 
 +<code haskell>​ 
 +subst :: Char -> LExpr -> LExpr -> LExpr 
 +</​code>​ 
 + 
 +14. Implement a function which reduces a **reducible** λ-expression to an irreducible one. (According to the lecture definition, what happens with λx.(λx.x x) ? 
 +<code haskell>​ 
 +reduce :: LExpr -> LExpr 
 +</​code>​ 
 + 
 +15. Implement **normal-order** evaluation. 
 + 
 +16. Implement **applicative** (strict) evaluation.
  
-Also, ''​( ((f ((g a) b)) y) ((h u) v))''​ becomes ​ ''​(f (g a b) y (h u v))''​