Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
pp:2024:l07 [2024/04/11 07:57]
tpruteanu [7.4. Natural Numbers - Church numerals]
pp:2024:l07 [2024/05/23 12:09] (current)
tpruteanu [7.4. Natural Numbers - Church numerals]
Line 208: Line 208:
 \\ \\
 To make this function be able to be iterated multiple times (on itself), we make the input another pair, where the second value is the '​real'​ input: \\ To make this function be able to be iterated multiple times (on itself), we make the input another pair, where the second value is the '​real'​ input: \\
-$ \phi = \lambda p.PAIR \ (SECOND \ p) \ (SUCC \ (SECOND \ p)) $ \\+$ \phi = \lambda p.((PAIR \ (SECOND \ p)) \ (SUCC \ (SECOND \ p))) $ \\
 \\ \\
 This takes a pair ( $ n $, $ (SUCC \ n) $) and returns another pair ($ (SUCC \ n) $, $ (SUCC \ (SUCC \ n)) $ This takes a pair ( $ n $, $ (SUCC \ n) $) and returns another pair ($ (SUCC \ n) $, $ (SUCC \ (SUCC \ n)) $
 \\ \\
 Now we can just iterate this **n** times starting with $ N0 $, and we get a pair ($ n - 1 $, $ n $), where the first value is our predecesor: \\ Now we can just iterate this **n** times starting with $ N0 $, and we get a pair ($ n - 1 $, $ n $), where the first value is our predecesor: \\
-$ PRED = \lambda n.(FIRST \ (n \ (\phi \ (PAIR \ N0 \ N0)))) $ \\+$ PRED = \lambda n.(FIRST \ ((n \ \phi\ (PAIR \ N0 \ N0))) $ \\
 \\ \\
 An alternative solution, that uses a value container is the following (unfortunately,​ we will not explain this in further detail here): \\ An alternative solution, that uses a value container is the following (unfortunately,​ we will not explain this in further detail here): \\