Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
pp:2023:scala:l05 [2023/03/24 23:22]
alexandra.udrescu01 [4.2 Binary Trees]
pp:2023:scala:l05 [2023/04/05 23:03] (current)
mihai.udubasa move from old (bad) link
Line 1: Line 1:
-====== Lab 4Data types in Scala ======+====== Lab 5Polymorphism ​======
  
-Objectives+===== 5.1. Maps ===== 
-  * get familiar ​with **algebraic data types** +Maps are collections of **(key, value)** pairs. Keys should be unique, and every key is associated with a value. \\  
-  * get familiar with **pattern matching** and **recursion** with them+Some of the fundamental operations on maps include
 +  * retrieving / updating the value associated ​with a key 
 +  ​adding a **(key, value)** pair 
 +  * removing a **(key, value)** pair 
 +You can find more information on maps on the Scala Docs (https://​docs.scala-lang.org/​overviews/​collections/​maps.html). \\ 
 +<note important>​ maps are **immutable**, functions working ​with maps return a new updated version instead of modifing the map </​note>​ 
 +Some examples with the most used functions can be found below. 
 +<​hidden>​ 
 +<code scala>​let map = Map(1 -> 2, 3 -> 4): Map[Int, Int]</​code>​ 
 +  * Adding a (key, value) pair to a map 
 +<code scala> 
 +map + (5 -> 6)  // Map(1 -> 2, 3 -> 4, 5 -> 6) 
 +map + (3 -> 5)  // Map(1 -> 2, 3 -> 5)  -- if key exists, it updates the value 
 +</​code>​ 
 +  * Removing the pair associated with a key 
 +<code scala> 
 +map - (3 -> 4)  // Map(1 -> 2) 
 +</​code>​ 
 +  * Querying a value 
 +<code scala> 
 +map get 1  // return 2 
 +map get 3  // return 4 
 +map getOrElse (1, 0)  // return 2 
 +map getOrElse (5, 0)  // return 0 (if key doesn'​t exist, return provided value) 
 +map contains 1  // True 
 +map contains 5  // False 
 +</​code>​ 
 +  * Higher-order functions 
 +<code scala> 
 +map mapValues (x => x + 5)  // Map(1 -> 7, 2 -> 9) 
 +map filterKeys (x => x <= 2)  // Map(1 -> 2) 
 +</​code>​ 
 +</​hidden>​
  
-==== 4.1 Natural Numbers ​==== +==== Exercises ​==== 
-Given the following implementation of the natural numberssolve the next few exercices.+We represent a gradebook as a map which holdsfor each student (encoded as String), its grade (an Int)We implement a gradebook as a case class, as follows:
 <code scala> <code scala>
-trait NaturalNumber +case class Gradebook(bookMap[String,​Int])
-case object Zero extends NaturalNumber +
-case class Successor(xNaturalNumberextends NaturalNumber+
 </​code>​ </​code>​
  
-**4.1.1** ​Write function which takes two natural numbersand return their sum.+**5.1.1.** Add method ''​+''​ to the classwhich adds a new entry to the gradebook.
 <code scala> <code scala>
-def add(xNaturalNumbery: NaturalNumber): NaturalNumber ​= ???+def (entry(StringInt)): Gradebook ​= ???
 </​code>​ </​code>​
  
-**4.1.2** ​Write function ​which takes two natural numbers, and return ​their product.+**5.1.2.** Add method ''​setGrade'' ​which modifies the grade of a given student. Note that your method should ​return ​an updated gradebook, not modify the current one, since the latter is **immutable**.
 <code scala> <code scala>
-def multiply(xNaturalNumberyNaturalNumber): NaturalNumber ​= ???+def setGrade(nameStringnewGradeInt): Gradebook ​= ???
 </​code>​ </​code>​
  
-**4.1.3** ​Write function ​which takes an int and converts it to NaturalNumber.+**5.1.3.** Add method ''​++'' ​which merges two gradebooks, if student is in both gradebook, take the higher of the two grades.
 <code scala> <code scala>
-def toNaturalNumber(x: Int): NaturalNumber ​= ???+def ++(otherGradebook): Gradebook = { 
 +  // the best strategy is to first implement the update of an entry into an existing Map... 
 +  def updateBook(book:​ Map[String,​Int],​ pair: (String,Int)): Map[String,​Int] ​= ??? 
 +  // and then use a fold to perform updates for all pairs of the current map. 
 +  ??? 
 +}
 </​code>​ </​code>​
  
-==== 4.2 Binary Trees ==== +**5.1.4. (!)** Add a method which returns a map, containing as key, each possible grade (from 1 to 10) and a value, ​the **number** ​of students having that grade. (Hint: follow the same strategy as for the previous exercise).
-Given the following implementation ​of binary trees, solve the next few exercices.+
 <code scala> <code scala>
-trait BTree +def gradeNoMap[Int,Int] = ???
-case object EmptyTree extends BTree +
-case class Node(value: Int, left: BTree, right: BTree) extends BTree+
 </​code>​ </​code>​
  
-**4.2.1** Write function ​which takes BinaryTree ​and returns its depth.+===== 5.2. Polymorphic expressions ===== 
 + 
 +In this section we will implement ​very simple expression evaluation (which might be part of programming language), ​and we will experiment with different features that will: \\ 
 +  - make the code easier to use 
 +  - make the code more general, suitable for a broad range of scenarios (easier to extend) 
 + 
 +**NOTE**: In this process, we will have to rewrite and delete parts of the code from previous steps in order to improve it. 
 + 
 +Start with the following polymorphic type definition for a expression:  
 <code scala> <code scala>
-def depth(tree: BTree): Int = ???+trait Expr[A] { 
 +  ​def eval(): 
 +}
 </​code>​ </​code>​
  
-**4.2.2** Write a function ​which takes a BinaryTree ​and returns the number of nodes with even number of children.+**5.2.1.** Implement case classes ''​BoolAtom'',​ ''​BoolAdd''​ and ''​BoolMult'', ​which evaluates ''​Add''​ as boolean //or// and ''​Mult''​ as boolean //and//.
 <code scala> <code scala>
-def evenChildCount(treeBTree): Int = ???+case class BoolAtom(b: Boolean) extends Expr[Boolean] { 
 +  override ​def eval()Boolean = b 
 +
 +case class BoolAdd(left:​ Expr[Boolean],​ right: Expr[Boolean]) extends Expr[Boolean] { 
 +  override def eval(): Boolean = ??? 
 +
 +case class BoolMult(left:​ Expr[Boolean],​ right: Expr[Boolean]) extends Expr[Boolean] { 
 +  override def eval(): Boolean ​= ??? 
 +}
 </​code>​ </​code>​
  
-**4.2.3** Write function which takes BinaryTree ​and flattens it (turns it into list containing the values of the nodes).+The code structure can be easily deployable for other types, such as **Int**, **Double** etc, but it's inconvenient to be defining different types for each such case. In order to make our code more extensible in this sense, we can add few ingredients. \\ 
 +We will add new case class ''​Strategy'',​ which stores the operations that can be performed, in our case ''​Add'' ​and ''​Mult''​. And we will have our ''​eval''​ function take ''​Strategy''​ as a argument. 
 <code scala> <code scala>
-def flatten(treeBTree): List[Int= ???+case class Strategy[A] ​(add(A,A=> A, mult(A,A) => A) 
 + 
 +trait Expr[A
 +   def eval(s: Strategy[A]):​ A 
 +}
 </​code>​ </​code>​
  
-**4.2.4** Write a function which takes a BinaryTree and return ​the number ​of nodes whose values follow ​ceratain rule.+**5.2.2.** Adjust ​the rest of your code with the new definitions (**NOTE**: ''​eval''​ should have more general implementation now). Implement ''​boolStrategy''​.
 <code scala> <code scala>
-def countNodes(tree: BTreecond: Int => Boolean): Int ???+ 
 +val boolStrategy = Strategy[Boolean]( 
 +    (leftright) ​=> ,  // add implementation 
 +    (left, right) =>    // mult implementation 
 +
 + 
 +val expr1 = BoolMult(BoolAdd(BoolAtom(true),​ BoolAtom(false)),​ BoolAtom(false)) 
 +val expr2 = BoolMult(BoolAdd(BoolAtom(true),​ BoolAtom(false)),​ BoolAtom(true)) 
 + 
 +println(expr1.eval(boolStrategy)) ​ // false 
 +println(expr2.eval(boolStrategy)) ​ // true
 </​code>​ </​code>​
  
-**4.2.5** Write a function which takes a BinaryTree ​and return mirrored BTree.+**5.2.3.** If you implemented ''​eval''​ correctly at **6.3.2.**, you might notice that it doesn'​t rely on the ''​Boolean''​ type anymore. Add more general case classes ''​Atom'',​ ''​Add'' ​and ''​Mult''​.
 <code scala> <code scala>
-def mirror(treeBTree): BTree= ???+case class Atom[A](a: A) extends Expr[A] { 
 +    override def eval(f: Strategy[A]) = ??? 
 +
 + 
 +case class Add[A](left:​ Expr[A], right: Expr[A]) extends Expr[A] { 
 +    override def eval(f: Strategy[A]):​ A = ??? 
 +
 + 
 +case class Mult[A](left:​ Expr[A], right: Expr[A]) extends Expr[A] { 
 +    override ​def eval(fStrategy[A]): = ??? 
 +}
 </​code>​ </​code>​
  
-==== 4.3 General matrix ==== +**5.2.4.** Currently, writing down expressions is cumbersome, due to the escalating number ​of parentheses. It would be advisable to allow building expressions using friendlier syntaxsuch as: ''​Atom(1) + Atom(2) * Atom(3)''​. This is possible if we define ​the operations ''​+''​ and ''​*''​ as member functionsThen, for instance ''​Atom(1) + Atom(2)''​ could be translate from ''​Atom(1).+(Atom(2))''​. Where would it be most convenient for you - the programmer, to define functions ''​+''​ and ''​*''?​ Define them! \\ 
-Given the following implementation ​of a generalized matrixsolve the next few exercices.+\\ 
 +**Hint:** 
 +<​hidden>​ 
 +In Scala it is possible to define function implementations in traits. Define ''​+''​ and ''​*''​ accordingly. 
 +</​hidden>​ 
 +\\ 
 + 
 +So far, our expressions contain just values (of different sorts). Making a step towards a programming language (like we mentioned above), we would like to also introduce **variables** in our expressions. To do so, we need to **interpret** each variable as boolean or int etc. We define a **store**:
 <code scala> <code scala>
-trait GMatrix +type Store[A= Map[String, A]
-case class Scalar(value:​ Int) extends GMatrix +
-case class Vector(values:​ List[Int]) extends GMatrix +
-case class Matrix(values:​ List[List[Int]]) extends GMatrix+
 </​code>​ </​code>​
 +to be a mapping from values of type ''​String''​ (variable names) to their values. \\
  
-**4.3.1** Write a function which takes GMatrix and multiplies each element ​by an Int.+**5.2.5.**  
 +  * Modify ''​eval'' ​function ​to also take a **store** as an argument, modify the code accordingly 
 +  * Add a new **case class** ''​Var'' ​which allows creating variables as expressions (e.g. ''​Var("​x"​) + Atom(1)''​ should be valid expression) 
 + 
 +<​hidden>​ 
 +You don't have to modify the expressions from **6.3.5**, you can use ''​eval''​ with just 1 parameter ​by overloading the method and calling the new ''​eval''​ with the empty Map.
 <code scala> <code scala>
-def multiply(mGMatrix, x: Int): GMatrix ​???+def eval(sStrategy[A]) = eval(s, Map[String, A]())
 </​code>​ </​code>​
 +</​hidden>​
 +\\
  
-**4.3.1** Write a function which takes a two GMatrices and multiplies them+**5.2.6.** We have not treated the case when the expression uses variables not found in the store. To do so, we change the type signature of eval to:
 <code scala> <code scala>
-def multiply(m1GMatrixm2GMatrix): GMatrix = ???+def eval (sStrategy[A]storeStore[A]): Option[A]
 </​code>​ </​code>​
 +Modify your implementation accordingly. If an expression uses variables not present in the store, ''​eval''​ should return ''​None''​.
  
-==== 4.4 Human Genome ​==== +===== 5.3Polynomials ===== 
-Given the following implementation of human genomesolve the next few exercices.+Consider ​polynomial encoded as a mapwhere each present key denotes a power of **x**, and a value denotes its coefficient
 <code scala> <code scala>
-trait Gene +Map(2 -> 1, 1 -> 2, 0 -> 1 // encodes x^2 + 2*x + 1
-case class A(code: Intextends Gene +
-case class C(code: Int) extends Gene +
-case class G(code: Int) extends Gene +
-case class T(code: Int) extends Gene+
 </​code>​ </​code>​
 +<code scala>
 +case class Polynomial (terms: Map[Int,​Int]) ​
 +</​code>​
 +<​hidden>​
 +You can override the ''​toString''​ method to to see your results in a more friendly format:
 +<code scala>
 +case class Polynomial (terms: Map[Int,​Int]) {
 +    override def toString: String = {
 +        def printRule(x:​ (Int, Int)): String = x match {
 +            case (0, coeff) => coeff.toString
 +            case (1, coeff) => coeff.toString ++ "​*x"​
 +            case (p, coeff) => coeff.toString ++ "​*x^"​ ++ p.toString
 +        }
  
-**4.4.1** Write function which takes a two gene sequencies and checks their compatibility. ​''​A-T, C-G, T-A, G-C''​+        terms.toList.sortWith(_._1 >= _._1) 
 +                      .map(printRule) 
 +                      .reduce(_ ++ " + " ++ _) 
 +    } 
 +
 +</​code>​ 
 +</​hidden>​ 
 +\\ 
 +**5.3.1.** Add method ​''​*'' ​which multiplies the polynomial by a given coeficient:
 <code scala> <code scala>
-def compatibility(seq1List[Gene], seq2: List[Gene]): Boolean ​= ???+def (nInt): Polynomial ​= ???
 </​code>​ </​code>​
  
-**4.4.2** Write function ​which takes a gene sequence and checks ​their encoded value (G1G2G3 -> code1code2code3)+**5.3.2.** Implement ​method ''​hasRoot'' ​which checks ​if a given integer is a root of the polynomial.
 <code scala> <code scala>
-def encode(seqList[Gene]): List[Int]= ???+def hasRoot(rInt): Boolean ​= ???
 </​code>​ </​code>​
  
-**4.4.2** Write function ​which takes gene sequence and returns the gene sequence that annihilates ​given one (make the wrong combinations,​ unlike 4.4.1)+**5.3.3.** Implement ​method ''​+'' ​which adds a given polynomial to this one (Hint: this operation is very similar to gradebook merging).
 <code scala> <code scala>
-def worstEnemy(seqList[Gene]): List[Gene]= ???+def (p2Polynomial): Polynomial ​= ???
 </​code>​ </​code>​
 +
 +**5.3.4.** Implement a method ''​*''​ which multiplies two polynomials.
 +<code scala>
 +def * (p2: Polynomial):​ Polynomial = ???
 +</​code>​
 +
 +**5.3.5.** Implement ''​polynomialStrategy''​ and try to evaluate a few expressions with polynomials.
 +
 +<​hidden>​
 +You can test your code with the following expression:
 +<code scala>
 +val p1 = Polynomial(Map(2 -> 1, 1 -> 2, 0 -> 1))
 +val p2 = Polynomial(Map(3 -> 1, 1 -> 3, 0 -> 2))
 +val expr = (Atom(p1) + Atom(p2)) * Atom(p1)
 +
 +println(expr.eval(polynomialStrategy))
 +// result: x^5 + 3*x^4 + 8*x^3 + 14*x^2 + 11*x + 3
 +</​code>​
 +</​hidden>​
 +
 +