Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
lfa:lab10-cfl-closures [2020/12/07 18:14] lfa |
lfa:lab10-cfl-closures [2020/12/08 09:12] (current) lfa |
||
---|---|---|---|
Line 11: | Line 11: | ||
//1.1// Write a PDA which accepts L(G) | //1.1// Write a PDA which accepts L(G) | ||
- | **1.2** Write a sequence of derivations which yeilds $ S\ \Rightarrow\ 110X1Y $ . What is it's corresponding sequence of transitions in the PDA? | + | //1.2// Write a sequence of derivations which yeilds $ S\ \Rightarrow\ 110X1Y $ . What is it's corresponding sequence of transitions in the PDA? |
- | **1.3** In our PDA, $ (p, 111100, XZ0) \mapsto^* (p, e, Z0) $. Write-down the steps. How is $ \alpha $ split into $ \alpha_1 ... \alpha_n $? | + | //1.3// In our PDA, $ (p, 111100, XZ0) \mapsto^* (p, e, Z0) $. Write-down the steps. How is $ \alpha $ split into $ \alpha_1 ... \alpha_n $? \\ \\ |
=== Closure Properties of Context-Free Languages === | === Closure Properties of Context-Free Languages === | ||
- | == **2.** Which of the following languages are Context-Free? Argue for your answer. == | + | **2.** Which of the following languages are Context-Free? Argue for your answer. |
- | **2.1.** $ L = \{a^{n}b^{2n}c^{2m}d^{m}\ |\ n, m \geq 0 \} $ \\ | + | //2.1.// $ L = \{a^{n}b^{2n}c^{2m}d^{m}\ |\ n, m \geq 0 \} $ \\ |
- | **2.2.** $ L = \{w \in \{a, b\}^*\ |\ each\ sequence\ of\ consecutive\ As\ is\ followed\ by\ the\ same\ number\ of\ Bs\} $ \\ | + | //2.2.// $ L = \{w \in \{a, b\}^*\ |\ each\ sequence\ of\ consecutive\ As\ is\ followed\ by\ the\ same\ number\ of\ Bs\} $ \\ |
- | **2.3.** $ L = \{a^{n}b^{2n}c^{m}\ |\ n, m \geq 0 \} \cap \{a^{n}b^{m}c^{2m}\ |\ n, m \geq 0 \} $ \\ | + | //2.3.// $ L = \{a^{n}b^{2n}c^{m}\ |\ n, m \geq 0 \} \cap \{a^{n}b^{m}c^{2m}\ |\ n, m \geq 0 \} $ \\ |
- | **2.4.** $ L = \{w \in \{a, b\}^*\ |\ a\ and\ b\ can\ be\ matched\ in\ sequences,\ in\ any\ order \} $. Example : $ aabbbbaaaabb \in L $ \\ | + | //2.4.// $ L = \{w \in \{a, b\}^*\ |\ a\ and\ b\ can\ be\ matched\ in\ sequences,\ in\ any\ order \} $. Example : $ aabbbbaaaabb \in L $ \\ |
- | **2.5.** $ L = \{w \in \{a, b\}^*\ |\ w=a^nb^n \ and\ |w|\ \%\ 3\ =\ 0 \} $ \\ | + | //2.5.// $ L = \{w \in \{a, b\}^*\ |\ w=a^nb^n \ and\ |w|\ \%\ 3\ =\ 0 \} $ \\ |
- | **2.6.** $ L = \{w \in \{a, b\}^*\ |\ w=a^nb^n \ and\ |w|\ \%\ 3\ =\ 0 \} $ \\ | + | //2.6.// $ L = \{w \in \{a, b\}^*\ |\ \#_{a}(w)=\#_{b}(w) \ and\ no\ b\ should\ be\ followed\ by\ two\ a \} $ \\ |
- | **2.7.** Give an example of two context-free languages whose intersection is context-free. | + | //2.7.// Give an example of two context-free languages whose intersection is context-free. |
- | == **3.** Show that the following are closed under CF languages: = | ||
+ | **3.** Show that the following are closed under CF languages: | ||
- | **2.1.** | + | //3.1// Reversal \\ |
- | + | ||
- | $ S \leftarrow aA | A $ \\ | + | |
- | $ A \leftarrow aA | B $ \\ | + | |
- | $ B \leftarrow bB | \epsilon $ | + | |
- | + | ||
- | **2.2.** | + | |
- | + | ||
- | $ S \leftarrow AS | \epsilon $ \\ | + | |
- | $ A \leftarrow 0A1 | 01 | B $\\ | + | |
- | $ B \leftarrow B1 | \epsilon $ | + | |
- | + | ||
- | **2.3.** | + | |
- | + | ||
- | $ S \leftarrow ASB | BSA | \epsilon $\\ | + | |
- | $ A \leftarrow aA | \epsilon $\\ | + | |
- | $ B \leftarrow bB | \epsilon $ | + | |
- | + | ||
- | **3.** Write an ambiguous grammar for $ L(a^*) $. | + | |
- | + | ||
- | === Regular Grammars === | + | |
- | + | ||
- | **4.** Is the language described by the following grammar regular? If so, write a regular expression for it. | + | |
- | + | ||
- | $ S \leftarrow aA $\\ | + | |
- | $ A \leftarrow aA | B $\\ | + | |
- | $ B \leftarrow Bb | \epsilon $ | + | |
- | + | ||
- | **5.** Write a regular expression for the language described by: | + | |
- | + | ||
- | $ S \leftarrow aX $\\ | + | |
- | $ X \leftarrow bY | S $\\ | + | |
- | $ Y \leftarrow aX | bS | \epsilon $ | + | |
- | + | ||
- | **6.** Write a regular grammar for $ L((0 \cup 1^*)^*01^*) $. | + | |
- | + | ||
- | === Chomsky Normal Form === | + | |
- | + | ||
- | **7.** Remove "$ \epsilon \text{-rules} $" from the following grammar: | + | |
- | + | ||
- | $ A \leftarrow \epsilon | B $\\ | + | |
- | $ B \leftarrow b $\\ | + | |
- | $ B \leftarrow ABC | BAC $\\ | + | |
- | $ C \leftarrow AC | c$ | + | |
- | + | ||
- | **8.** Remove the "unit rules" from the previous grammar, after "$ \epsilon \text{-rules} $" have been removed. | + | |
- | + | ||
- | **9.** Apply the CNF conversion rules to the solution for **1.1.** Does the accepted language stay the same? | + | |
+ | //3.2// $ init(L) = \{w\ \in\ \Sigma^*\ |\ \exists x\ such\ that\ wx\ \in\ L\}. $ //Hint//: Write a CNF grammar for init L, starting from a grammar for L. | ||