Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
lfa:lab10-cfl-closures [2020/12/07 08:20] lfa created |
lfa:lab10-cfl-closures [2020/12/08 09:12] (current) lfa |
||
---|---|---|---|
Line 1: | Line 1: | ||
- | . | + | ====== Context Free Languages ====== |
+ | |||
+ | === Context-Free Grammar to Pushdown Automata === | ||
+ | |||
+ | ** 1.** Consider the following CFG: | ||
+ | |||
+ | $ S \leftarrow X\ |\ Y $ \\ | ||
+ | $ X \leftarrow YXY\ |\ 0X\ |\ 0 $ \\ | ||
+ | $ Y \leftarrow YY\ |\ 1\ |\ \epsilon $ | ||
+ | |||
+ | //1.1// Write a PDA which accepts L(G) | ||
+ | |||
+ | //1.2// Write a sequence of derivations which yeilds $ S\ \Rightarrow\ 110X1Y $ . What is it's corresponding sequence of transitions in the PDA? | ||
+ | |||
+ | //1.3// In our PDA, $ (p, 111100, XZ0) \mapsto^* (p, e, Z0) $. Write-down the steps. How is $ \alpha $ split into $ \alpha_1 ... \alpha_n $? \\ \\ | ||
+ | |||
+ | |||
+ | === Closure Properties of Context-Free Languages === | ||
+ | |||
+ | **2.** Which of the following languages are Context-Free? Argue for your answer. | ||
+ | |||
+ | //2.1.// $ L = \{a^{n}b^{2n}c^{2m}d^{m}\ |\ n, m \geq 0 \} $ \\ | ||
+ | |||
+ | //2.2.// $ L = \{w \in \{a, b\}^*\ |\ each\ sequence\ of\ consecutive\ As\ is\ followed\ by\ the\ same\ number\ of\ Bs\} $ \\ | ||
+ | |||
+ | //2.3.// $ L = \{a^{n}b^{2n}c^{m}\ |\ n, m \geq 0 \} \cap \{a^{n}b^{m}c^{2m}\ |\ n, m \geq 0 \} $ \\ | ||
+ | |||
+ | //2.4.// $ L = \{w \in \{a, b\}^*\ |\ a\ and\ b\ can\ be\ matched\ in\ sequences,\ in\ any\ order \} $. Example : $ aabbbbaaaabb \in L $ \\ | ||
+ | |||
+ | //2.5.// $ L = \{w \in \{a, b\}^*\ |\ w=a^nb^n \ and\ |w|\ \%\ 3\ =\ 0 \} $ \\ | ||
+ | |||
+ | //2.6.// $ L = \{w \in \{a, b\}^*\ |\ \#_{a}(w)=\#_{b}(w) \ and\ no\ b\ should\ be\ followed\ by\ two\ a \} $ \\ | ||
+ | |||
+ | //2.7.// Give an example of two context-free languages whose intersection is context-free. | ||
+ | |||
+ | |||
+ | **3.** Show that the following are closed under CF languages: | ||
+ | |||
+ | //3.1// Reversal \\ | ||
+ | |||
+ | //3.2// $ init(L) = \{w\ \in\ \Sigma^*\ |\ \exists x\ such\ that\ wx\ \in\ L\}. $ //Hint//: Write a CNF grammar for init L, starting from a grammar for L. |