Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
lfa:lab08-push-down-automata [2020/11/21 22:49]
ruxandrarusu
lfa:lab08-push-down-automata [2020/12/04 22:08] (current)
dmihai
Line 7: Line 7:
 **1.2.** $ L = \{\: w \in \{A,B\}^* \ | \: \text{#​}A(w) \neq \: \text{#​}B(w) \} $ **1.2.** $ L = \{\: w \in \{A,B\}^* \ | \: \text{#​}A(w) \neq \: \text{#​}B(w) \} $
  
-**1.3.** $ L = \{ A^{n} B^{m+n} C^{n} \ | \: n, m \geq 0 \} $+**1.3.** $ L = \{ A^{m} B^{m+n} C^{n} \ | \: n, m \geq 0 \} $
  
-**1.4.** $ L = \{ A^{n}B^{n}C^{m}D^{m} | \: \ n,m \geq 0 \}  ​ \{ A^nB^mC^mD^n | \: \ n,m \geq 0 \} $+**1.4.** $ L = \{ A^{n}B^{n}C^{m}D^{m} | \: \ n,m \geq 0 \}  ​\cup  \{ A^nB^mC^mD^n | \: \ n,m \geq 0 \} $
  
 **1.5.** $ L = \{ A^{i}B^{j}C^{k} | \: \text{ i=j or j=k} \} $ **1.5.** $ L = \{ A^{i}B^{j}C^{k} | \: \text{ i=j or j=k} \} $
Line 16: Line 16:
  
 Consider the following definition for an accepted word, by a PDA: Consider the following definition for an accepted word, by a PDA:
- (q0, w, Z0|- (q,e,e) where q is any state from K+ $(q_{0}, w, Z_{0}\vdash ​(q,e,e)where is any state from K.
  
 Prove that a language is CF if it can be accepted by a PDA via the empty-stack definition. Prove that a language is CF if it can be accepted by a PDA via the empty-stack definition.
  
 (**Hint**, you need to prove two parts) (**Hint**, you need to prove two parts)