Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
lfa:lab07-the-pumping-lemma [2020/11/19 16:49]
pdmatei
lfa:lab07-the-pumping-lemma [2021/12/06 12:08] (current)
stefan.stancu [8.2. Languages which are not regular]
Line 1: Line 1:
-====== ​The Pumping Lemma ======+====== ​8. Proving languages are not regular ​======
  
-**Exercise ​1.** Consider the language $  L L((A \cup BB^*)^*)$. ​+===== 8.1. The pumping lemma ====
  
-**1.1.** ​Suppose n = 4. Show that the pumping lemma holds for L.+**8.1.1.** Show that the pumping lemma holds for finite languages.
  
-**1.2.** ​Show that the pumping lemma holds for finite languages.+**8.1.2.*** Find a language which is not regular for which the pumping lemma holds.
  
-**1.3.*** Find a language ​which is not regular ​for which the pumping lemma holds.+===== 8.2Languages ​which are not regular ​=====
  
-**Exercise 2.**  Prove that is not regular ​language.+Show that each of the languages from the list below is not regular.
  
-**2.1.** $  L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $+**8.2.1.** $  L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $
  
-**2.2.** $  L = \{ \: w \in \{A,B\}^* \: | \: \#A(w) = \#B(w) \: \} $+**8.2.2.** $  L = \{ \: w \in \{A,B\}^* \: | \: \#A(w) = \#B(w) \: \} $
  
-**2.3.** $  L = \{ \: w \in \{A,B\}^\: | \: \text{w is a palindrome\: \} $+**8.2.3.** $math[L = \{(01)^n(10)^n ​\mid n > 0 \} ]
  
-**2.4.** $  L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $+**8.2.4.** $  L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $
  
-**2.5.** $  L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $+**8.2.5.** $  L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $
  
-**Exercise ​3.** Using the pumping lemma indirectly, prove that $  L = \{ \: A^nB^m \: | \: n \neq m \}$ is not a regular language.+**8.2.6.** $  L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $ 
 + 
 +**8.2.7.** $  L = \{ \: ww^R  \: | \: w\in \{0,1\}^* \}  
 +
 + 
 + 
 +===== 8.3. Combining the pumping lemma with closure properties ===== 
 + 
 +**8.3.1.** Using the pumping lemma, prove that $  L = \{ \: A^nB^m \: | \: n \neq m \}$ is not a regular language.
  
 /* /*