Differences

This shows you the differences between two versions of the page.

Link to this comparison view

lfa:2025:lab11 [2026/01/20 11:45]
cata_chiru created
lfa:2025:lab11 [2026/01/20 11:46] (current)
cata_chiru
Line 1: Line 1:
-====== ​12. Pumping Lemma for Context-Free Languages and Recap ======+====== ​11. Pumping Lemma for Context-Free Languages and Recap ======
  
 <note important>​ <note important>​
Line 11: Line 11:
 \end{align}$$ \end{align}$$
 </​note>​ </​note>​
-===== 12.1. Finding the class of languages =====+===== 11.1. Finding the class of languages =====
  
 For each of the following languages, find the most restrictive class of languages that it belongs to (regular, context-free but not regular, not context-free). Prove the language belongs to that class by finding a generator/​acceptor and/or using the complement of the pumping lemma. For each of the following languages, find the most restrictive class of languages that it belongs to (regular, context-free but not regular, not context-free). Prove the language belongs to that class by finding a generator/​acceptor and/or using the complement of the pumping lemma.
  
-12.1.1. $ L_1 = \{ a^nb^mc^nd^m \ |\ n, m \geq 0 \} $+11.1.1. $ L_1 = \{ a^nb^mc^nd^m \ |\ n, m \geq 0 \} $
  
-12.1.2. $ L_2 = \{ a^nb^mc^md^n \ |\ n, m \geq 0 \} $+11.1.2. $ L_2 = \{ a^nb^mc^md^n \ |\ n, m \geq 0 \} $
  
-===== 12.2. Recap =====+===== 11.2. Recap =====
  
 For each of the conditions below, find non-regular languages $ L_1, L_2 $ satisfying: For each of the conditions below, find non-regular languages $ L_1, L_2 $ satisfying:
  
-12.2.1.  $ L_1 \cup L_2 $ is context-free+11.2.1.  $ L_1 \cup L_2 $ is context-free
  
-12.2.2.  $ L_1 \cap L_2 $ is context-free+11.2.2.  $ L_1 \cap L_2 $ is context-free
  
-12.2.3. $ \overline{L_1} $ is context-free+11.2.3. $ \overline{L_1} $ is context-free
  
-12.2.4. $ L_1 \cap L_2 $ is **not** context-free+11.2.4. $ L_1 \cap L_2 $ is **not** context-free
  
-12.2.5. $ L_1L_2 $ is context-free ​+11.2.5. $ L_1L_2 $ is context-free ​
  
 For each of the exercises above, prove the language indeed is/​isn'​t context-free using PDAs/​CFGs/​the complement of the Pumping Lemma For each of the exercises above, prove the language indeed is/​isn'​t context-free using PDAs/​CFGs/​the complement of the Pumping Lemma